Types of innovation and firms’ economic performance

Michele Cincera Ela Ince

iCite & ECARES
Solvay Brussels School of Economics and Management
Université Libre de Bruxelles (ULB)

CONCORDi, 2019
This paper uses augmented production function framework, and investigates how the different types of innovation affect firms’ economic performance.

The different types of innovation are measured by patent-based indicators.
Outline:

1. Motivation and Conceptual Framework
2. Data and Methodology
3. Results
4. Conclusions
Motivation

- Highly representative firm sample in terms of business R&D spending;
- Firm-level R&D spending and patenting information;
- Innovation type indicators through patents;
 - Originality and novelty
 - Forward citation weights and breakthrough inventions
 - Generality
- Contribution to innovation strategy and policy making.
Conceptual Framework

Research Question

R&D spending \Rightarrow The types of innovation \Rightarrow Firm performance

Patent-based Type Indicators

<table>
<thead>
<tr>
<th>Ex-ante type indicators</th>
<th>Ex-post type indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originality</td>
<td>Forward citations</td>
</tr>
<tr>
<td>Novelty in recombination</td>
<td>Breakthrough inventions</td>
</tr>
<tr>
<td>Novelty in tech. origins</td>
<td>Generality</td>
</tr>
</tbody>
</table>
Outline:

1. Motivation and Conceptual Framework
2. Data and Methodology
3. Results
4. Conclusions
Firm sample: The EU 2014 Industrial R&D Investment Scoreboard

Information available: Number of employees, Capital expenditure, R&D Expenditure, Operational Profit, Sector and Country.

Period: 2005 - 2013

Information used in the analysis:
- Patent applications at the EPO of type A and kind PI at family-level
- Priority filing dates
- 7-digits IPC technology class information
- Backward and forward citations at the EPO or at least at two IP5 patent offices
Originality: Hall at al. (2001):

\[\text{Originality}_p = 1 - \sum_{j}^{n_p} s_{p,j}^2 \]

where \(s_{p,j} \) is the percentage of citations made by patent \(p \) to patent class \(j \) out of the \(n_p \) 7-digits IPC contained in the cited patents.

Novelty: Verhoeven et al. (2016):

Novelty in recombination (NR): “If a patent contains at least one pair of IPC groups that were previously not connected.”

Novelty in technological origins (NTO): “If a patent makes a novel combination between its own IPC code and an IPC code of cited patents.”
Methodology: Forward-looking Type Indicators

Forward citations are normalized levels per technology field and year (Squicciarini et al., 2013).

Breakthrough inventions are the top 1% cited patent applications (Ahuja and Lampert, 2001).

Generality: Squicciarini et al. (2013):
“Let X be the focal patent with y_i citing patents, with $i = 1\ldots N$:

$$\text{Generality}_X = 1 - \sum_{j=1}^{M_i} \left(\frac{1}{N} \sum_{i=1}^{N} \frac{T_{j,i}^n}{T_i^n} \right)^2$$

where T_i^n is the total number of IPC n-digit classes of y_i, $T_{j,i}^n$ is the total number of IPC n-digit classes in the j^{th} IPC7-digit classes in y_i, and $j = 1\ldots M_i$ is the cardinal of all IPC7-digit classes in y_i."

Michele Cincera, Ela Ince (ULB) Types of innovation and firms’ economic performance CONCORDi, 2019
The augmented production function model proposed by Griliches (1979):

\[Y_{it} = A_t L_{it}^{\beta_1} C_{it}^{\beta_2} K_{it}^{\beta_3} e^{u_{it}} \]

Type Premium

Following Jaffe (1988):

\[\text{Premium}_{it}^k = \text{stype}_{i,t}^{-k} + (1 + \gamma)\text{stype}_{i,t}^k \]

Taking logarithm, our estimation equation is following:

\[y_{i,t} = c + \beta_1 c_{i,t} + \beta_2 l_{i,t} + \beta_3 k_{i,t} + \beta_4 \gamma \text{stype}_{i,t}^k / K_{i,t} + \tau_t \]
Outline:

1. Motivation and Conceptual Framework
2. Data and Methodology
3. Results
4. Conclusions
Descriptive Results: Type indicators at the EPO

- The Scoreboard firms’ R&D spending constitute the 90% of global industrial R&D (The 2014 EU Industrial R&D Investment Scoreboard).

- The Scoreboard firms’ patenting and innovation types at the EPO:

 - Patenting: 52%
 - Novelty in Recombination: 45%
 - Novelty in Technological Origins: 50%
 - Breakthrough inventions: 67%

Source: Authors’ own elaboration

Michele Cincera, Ela Ince (ULB)
Descriptive Results: Type indicators by sectors

Type indicators by sectors, 2000-2010

Source: Authors' own elaboration
Econometric Results: Fixed-Effects Estimation

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Originality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Cit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakthrough</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Employees - Log</td>
<td>0.576***</td>
<td>0.576***</td>
<td>0.576***</td>
<td>0.576***</td>
<td>0.576***</td>
<td>0.576***</td>
</tr>
<tr>
<td>(0.042)</td>
<td>(0.042)</td>
<td>(0.042)</td>
<td>(0.042)</td>
<td>(0.042)</td>
<td>(0.042)</td>
<td>(0.042)</td>
</tr>
<tr>
<td>Physical capital stock - Log</td>
<td>0.182***</td>
<td>0.182***</td>
<td>0.182***</td>
<td>0.181***</td>
<td>0.182***</td>
<td>0.182***</td>
</tr>
<tr>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>R&D stock - Log</td>
<td>0.143***</td>
<td>0.136***</td>
<td>0.143***</td>
<td>0.144***</td>
<td>0.142***</td>
<td>0.144***</td>
</tr>
<tr>
<td>(0.043)</td>
<td>(0.043)</td>
<td>(0.043)</td>
<td>(0.043)</td>
<td>(0.043)</td>
<td>(0.043)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Type stock/R&D stock - Lagged</td>
<td>0.003***</td>
<td>-0.692*</td>
<td>0.005***</td>
<td>0.034**</td>
<td>0.324*</td>
<td>0.004***</td>
</tr>
<tr>
<td>(0.001)</td>
<td>(0.390)</td>
<td>(0.002)</td>
<td>(0.016)</td>
<td>(0.177)</td>
<td>(0.002)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.375</td>
<td>0.427</td>
<td>0.377</td>
<td>0.371</td>
<td>0.380</td>
<td>0.374</td>
</tr>
<tr>
<td>(0.404)</td>
<td>(0.404)</td>
<td>(0.405)</td>
<td>(0.403)</td>
<td>(0.404)</td>
<td>(0.404)</td>
<td>(0.404)</td>
</tr>
<tr>
<td>Year dummy</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.499</td>
<td>0.499</td>
<td>0.499</td>
<td>0.499</td>
<td>0.499</td>
<td>0.499</td>
</tr>
<tr>
<td>Hausman test</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Number of id_new</td>
<td>1,146</td>
<td>1,146</td>
<td>1,146</td>
<td>1,146</td>
<td>1,146</td>
<td>1,146</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses:

*** p < 0.01, ** p < 0.05, * p < 0.1

Hausman test results favors the fixed-effects estimator relative to random effects estimator.
Outline:

1. Motivation and Conceptual Framework
2. Data and Methodology
3. Results
4. Conclusions
What is the impact of an innovation type on firm performance?

- **Originality and novelty of an invention:**
 - *Uncertainty in terms of commercial and technological success in the markets.*

- **Impact of an invention:**
 - *Positive impact of forward citations weighted inventions on firm performance.*
 - *Breakthrough inventions have even stronger impact.*

- **Multi-field usability of an invention:**
 - *Positive impact of general invention strategy on firm-level private returns*
What is next?

- **Extension of analysis:**
 - Sectoral analysis
 - Sub-samples according to firms’ characteristics and regions

- **Endogeneity and simultaneity issues:**
 - Estimations using two-stage least squares and GMM for panel data models
Thank you for your attention!

Michele Cincera: mcincera@ulb.ac.be
Ela Ince: ela.ince@ulb.ac.be