Do Consumers Shift from Private to Shared Ownership?

Francesco Pasimenia & Tommaso Ciarlia,b

a SPRU – University of Sussex, UK

b UNU-MERIT – Maastricht, The Netherlands
Problem setting

• Starting questions
 o How many goods do we own? For how long do we use them? And, what about our neighbours?
 Vacuum cleaners; drills
 Internet connection
 Private cars
 o Wouldn’t it be more convenient to organise and make a common purchase and share utilisation?
Problem setting

• Starting questions
 o How many goods do we own? For how long do we use them? And, what about our neighbours?
 - Vacuum cleaners; drills
 - Internet connection
 - Private cars
 o Wouldn’t it be more convenient to organise and make a common purchase and share utilisation?
 ➢ FRACTIONAL OWNERSHIP (shared consumption and ownership)
Problem setting

• **Starting questions**
 o How many goods do we own? For how long do we use them? And, what about our neighbours?
 - Vacuum cleaners; drills
 - Internet connection
 - Private cars
 o Wouldn’t it be more convenient to organise and make a common purchase and share utilisation?
 ➢ **FRACTIONAL OWNERSHIP** (shared consumption and ownership)

• **Research questions**
 o Do consumers shift from individual consumption and ownership to shared consumption and shared ownership?
 o Under which conditions/characteristics/preferences?
Problem setting

• Starting questions
 o How many goods do we own? For how long do we use them? And, what about our neighbours?
 Vacuum cleaners; drills
 Internet connection
 Private cars
 o Wouldn’t it be more convenient to organise and make a common purchase and share utilisation?
 ➢ FRACTIONAL OWNERSHIP (shared consumption and ownership)

• Research questions
 o Do consumers shift from individual consumption and ownership to shared consumption and shared ownership?
 o Under which conditions/characteristics/preferences?

• Policy implication
 o Unequal access to essential goods (too expensive for individual purchase): internet, transport, energy
 o Reduce not-sustainable individual consumption and ownership
More equal model in sharing economy

<table>
<thead>
<tr>
<th>Sharing Economy</th>
<th>Fractional Ownership</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase access</td>
</tr>
<tr>
<td></td>
<td>Sustainable consumption</td>
</tr>
<tr>
<td>“consumers granting each other temporary access to under-utilized physical assets (‘idle capacity’), possibly for money” (Frenken & Schor, 2017)</td>
<td></td>
</tr>
<tr>
<td>Ownership</td>
<td>Individual</td>
</tr>
<tr>
<td>Consumption</td>
<td>Access-based (payment - short rental)</td>
</tr>
<tr>
<td>Coordination</td>
<td>Market-based</td>
</tr>
<tr>
<td>Good</td>
<td>Anti-common</td>
</tr>
<tr>
<td></td>
<td>Right of exclusion</td>
</tr>
<tr>
<td></td>
<td>Increases power concentration</td>
</tr>
</tbody>
</table>
More equal model in sharing economy

<table>
<thead>
<tr>
<th>Ownership</th>
<th>Individual</th>
<th>Shared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>Access-based (payment - short rental)</td>
<td>Access-based (group coordination)</td>
</tr>
<tr>
<td>Coordination</td>
<td>Market-based</td>
<td>Social rules</td>
</tr>
<tr>
<td>Good</td>
<td>Anti-common, Right of exclusion, Increases power concentration</td>
<td>Common-pool resource, Shared good (not private, not public), Luxury goods (exclusive by nature)</td>
</tr>
</tbody>
</table>

Increase access
Sustainable consumption

“consumers granting each other temporary access to under-utilized physical assets (‘idle capacity’), possibly for money” (Frenken & Schor, 2017)

True sharing: “bottom-up community-led initiatives for shared consumption and ownership, to increase affordable access to goods for essential services” (Pasimeni, 2021)
Agent-Based Model

Evolutionary game theory of coalition formation with the “best reply” type of adjustment dynamic
Agent-Based Model

Evolutionary game theory of coalition formation with the “best reply” type of adjustment dynamic

\(t = 0 \): Agents satisfy their demand: 1) rely on the service from a general provider

2) buy and use a good individually
Agent-Based Model

Evolutionary game theory of coalition formation with the “best reply” type of adjustment dynamic

\[t = 0: \text{Agents satisfy their demand: } 1) \text{ rely on the service from a general provider} \\
\text{2) buy and use a good individually} \]

\[t > 0: \text{A third option is available: } 3) \text{ purchase commonly a good and share ownership and consumption} \]
Agent-Based Model

Evolutionary game theory of coalition formation with the “best reply” type of adjustment dynamic

t = 0: Agents satisfy their demand: 1) rely on the service from a general provider
 2) buy and use a good individually

t > 0: A third option is available: 3) purchase commonly a good and share ownership and consumption

• Agents interact to form a stable sharing groups:
 - Agents tie links, communicate, evaluate options, establish stable groups and share
Agent-Based Model

Evolutionary game theory of coalition formation with the “best reply” type of adjustment dynamic

\[t = 0: \text{Agents satisfy their demand: 1) rely on the service from a general provider} \]
\[\hspace{1cm} \text{2) buy and use a good individually} \]
\[t > 0: \text{A third option is available: 3) purchase commonly a good and share ownership and consumption} \]

- Agents interact to form a stable sharing groups:
 - Agents tie links, communicate, evaluate options, establish stable groups and share
 - Stability of sharing groups is necessary condition (purchase and share common good)
 - Agents establish a group when they reach stability (Pareto optimal)
 - all agents in group maximize individual utility (compared to other 2 options)
 - none of them has the incentive to move to another group or to purchase alone
 - no other agent wants to enter in this sharing group
Agent-Based Model

Evolutionary game theory of coalition formation with the “best reply” type of adjustment dynamic

\[t = 0: \] Agents satisfy their demand:
1) rely on the service from a general provider
2) buy and use a good individually

\[t > 0: \] A third option is available:
3) purchase commonly a good and share ownership and consumption

- Agents interact to form a stable sharing groups:
 - Agents tie links, communicate, evaluate options, establish stable groups and share
 - Stability of sharing groups is necessary condition (purchase and share common good)
 - Agents establish a group when they reach stability (Pareto optimal)
 - all agents in group maximize individual utility (compared to other 2 options)
 - none of them has the incentive to move to another group or to purchase alone
 - no other agent wants to enter in this sharing group

- Once the group is established, the decision to adopt the shared good is taken
Agent-Based Model

Evolutionary game theory of coalition formation with the “best reply” type of adjustment dynamic

$t = 0$: Agents satisfy their demand: 1) rely on the service from a general provider
 2) buy and use a good individually

$t > 0$: A third option is available: 3) purchase commonly a good and share ownership and consumption

• Agents interact to form a stable sharing groups:
 - Agents tie links, communicate, evaluate options, establish stable groups and share
 - Stability of sharing groups is necessary condition (purchase and share common good)
 - Agents establish a group when they reach stability (Pareto optimal)
 • all agents in group maximize individual utility (compared to other 2 options)
 • none of them has the incentive to move to another group or to purchase alone
 • no other agent wants to enter in this sharing group

• Once the group is established, the decision to adopt the shared good is taken

• Replacement after certain period of time-use
The utility functions (Cobb-Douglas)

1) Public provider (no purchase)

\[U_{i1} = [e_i - d_i p_1]^{\theta_i} (d_i * K)^{1-\theta_i} \]

1) Preference for income
2) Preference for consumption

2) Individual purchase:

3) Shared purchase:
The utility functions (Cobb-Douglas)

1) Public provider (no purchase)

\[U_{i1} = [c_i - d_i p_1]^{\theta_i} (d_i * K)^{1-\theta_i} \]

\[K = 1 - \frac{1 - k}{1 + e^{-r(\frac{A_1 t - 1}{z} - g)}} \]

1) Preference for income
2) Preference for consumption

2) Individual purchase:

3) Shared purchase:
The utility functions (Cobb-Douglas)

1) Public provider (no purchase)

2) Individual purchase:

\[U_{i2} = [e_i - (d_i p_2 + \frac{I}{L_2})]^{\theta_i} (d)^{1-\theta_i} \]

3) Shared purchase:
The utility functions (Cobb-Douglas)

1) Public provider (no purchase)

2) Individual purchase:
 \[U_{i2} = \left[e_i - (d_i p_2 + \frac{I}{L_2}) \right]^{\theta_i} (d)^{1-\theta_i}; \quad L_2 = \frac{S}{d_i} \text{ and } d_i \leq S \]

3) Shared purchase:
The utility functions (Cobb-Douglas)

1) Public provider (no purchase)

2) Individual purchase:

3) Shared purchase:

\[U_{i3} = \left[e_i - (d_ip_3 + x_i) \right]^{\theta_i} \left\{ (d_i + D_{-i}) \left[\frac{\alpha_id_i}{d_i + D_{-i}} + (1 - \alpha_i) \left(\frac{\beta_ix_i}{x_i + X_{-i}} + \frac{1 - \beta_i}{N} \right) \right] \right\}^{1-\theta_i} \]

1) Preference for income
2) Preference for consumption (in group)
The utility functions (Cobb-Douglas)

1) Public provider
 (no purchase)

2) Individual purchase:

3) Shared purchase: \(U_{i3} = [e_i - (d_ip_3 + x_i)]^{\theta_i} \{ (d_i + D_{-i}) \left[\frac{\alpha_i d_i}{d_i + D_{-i}} + (1 - \alpha_i) \left(\frac{\beta_i x_i}{x_i + X_{-i}} + \frac{1 - \beta_i}{N} \right) \right] \}^{1-\theta_i} \)

1) Preference for income
2) Preference for consumption (in group)
 a. Proportional division rule based on agent’s demand
 b. Proportional division rule based on agent’s monetary contribution
 c. Equal shared division rule based on group size
The utility functions (Cobb-Douglas)

1) Public provider (no purchase)

2) Individual purchase:

3) Shared purchase: \[U_{i3} = [e_i - (d_ip_3 + x_i)]^{\theta_i} \left\{ \left[\left(d_i + D_{-i} \right) \frac{\alpha_idx_d}{d_i + D_{-i}} + \left(1 - \alpha_i \right) \frac{\beta_idx_i}{x_i + X_{-i}} + \frac{1 - \beta_i}{N} \right] \right\}^{1-\theta_i} \]

- **1) Preference for income**
- **2) Preference for consumption (in group)**
 - a. Proportional division rule based on agent’s demand
 - b. Proportional division rule based on agent’s monetary contribution
 - c. Equal shared division rule based on group size

\[\sum d_i \leq S \quad \text{and} \quad L_3 = \frac{S}{\sum d_i} \quad \text{and} \quad \frac{I}{L_3} \leq \sum x_i \leq \frac{I}{L_3} \times 1.1 \]
Model initialisation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>$S=S_2=S_3$</td>
<td>600</td>
</tr>
<tr>
<td>Investment</td>
<td>$I=I_2=I_3$</td>
<td>1300</td>
</tr>
<tr>
<td>Price</td>
<td>$p=p_1=p_2=p_3$</td>
<td>1.5</td>
</tr>
<tr>
<td>Consumer features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>d_{delta}</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>d_{mean}</td>
<td>50</td>
</tr>
<tr>
<td>Income</td>
<td>e_{delta}</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>e_{mean}</td>
<td>900</td>
</tr>
<tr>
<td>Preference for income</td>
<td>θ_{delta}</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>θ_{mean}</td>
<td>0.5</td>
</tr>
<tr>
<td>Preference for demand division rule</td>
<td>α_{delta}</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>α_{mean}</td>
<td>0.5</td>
</tr>
<tr>
<td>Preference for contribution division rule</td>
<td>β_{delta}</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>β_{mean}</td>
<td>0.5</td>
</tr>
<tr>
<td>Public service features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest value of K</td>
<td>k</td>
<td>0.5</td>
</tr>
<tr>
<td>Steepness</td>
<td>r</td>
<td>10</td>
</tr>
<tr>
<td>Sigmoid midpoint</td>
<td>g</td>
<td>0.5</td>
</tr>
<tr>
<td>General provider capacity</td>
<td>Z</td>
<td>0.75</td>
</tr>
</tbody>
</table>

200 heterogenous agents

d_{mean} : average demand in population

d_{delta} : distance between min and max values of demand in the population

$d_i \in \text{UNIFORM} \ (d_{\text{min}} \ ; \ d_{\text{max}})$

\[
d_{\text{min}} = (d_{\text{mean}} - \frac{d_{\text{delta}}}{2})
\]

\[
d_{\text{max}} = (d_{\text{mean}} + \frac{d_{\text{delta}}}{2})
\]
Finding the niche in the economy

1. Global sensitivity analysis (full parameter space) (Dosi et al., 2018)
Finding the niche in the economy

1. Global sensitivity analysis (full parameter space) (Dosi et al., 2018)
 a. Elementary effect (EE) One-At-a-Time (OAT)
 o Identify the parameters most relevant to model output
 b. Near Orthogonal Latin Hypercube (NOLH) DoE
 o Optimise the number of model sampling points to be observed for the selected parameters
 c. Kirging meta-model estimation
 o Spatial interpolation method study the parameter space in which the number of sharing consumers is maximised
 d. Sobol decomposition
 o Evaluate the individual and interaction effects of parameters on the variance of the model output.

2. Global sensitivity analysis (small parameter space)
 a. NOLH DoE
 b. meta model
 c. decomposition

3. Transition from individual ownership to shared ownership
 o Model configuration that produces the highest number of sharing consumers
 o Which consumers drive it and to what extent it leads to a more sustainable model of consumption

4. Policy intervention
 o Unit price of the service/good
 o Size and cost of the good
 o Finding the niche in the economy
Finding the niche in the economy

1. Global sensitivity analysis (full parameter space) (Dosi et al., 2018)
 a. Elementary effect (EE) One-At-a-Time (OAT)
 o Identify the parameters most relevant to model output
 b. Near Orthogonal Latin Hypercube (NOLH) DoE
 o Optimise the number of model sampling points to be observed for the selected parameters
 c. Kirging meta-model estimation
 o Spatial interpolation method study the parameter space in which the number of sharing consumers is maximised
 d. Sobol decomposition
 o Evaluate the individual and interaction effects of parameters on the variance of the model output.

2. Global sensitivity analysis (small parameter space)
 a. NOLH DoE
 b. Kirging meta model
 c. Sobol decomposition

3. Transition from individual ownership to shared ownership
 o Model configuration that produces the highest number of sharing consumers
 o Which consumers drive it and to what extent it leads to a more sustainable model of consumption

4. Policy intervention
 o Unit price of the service/good
 o Size and cost of the good
 o Finding the niche in the economy
Finding the niche in the economy

1. Global sensitivity analysis (full parameter space) (Dosi et al., 2018)
 a. Elementary effect (EE) One-At-a-Time (OAT)
 o Identify the parameters most relevant to model output
 b. Near Orthogonal Latin Hypercube (NOLH) DoE
 o Optimise the number of model sampling points to be observed for the selected parameters
 c. Kirging meta-model estimation
 o Spatial interpolation method study the parameter space in which the number of sharing consumers is maximised
 d. Sobol decomposition
 o Evaluate the individual and interaction effects of parameters on the variance of the model output.

2. Global sensitivity analysis (small parameter space)
 a. NOLH DoE
 b. Kirging meta model
 c. Sobol decomposition

3. Transition from individual ownership to shared ownership
 o Model configuration that produces the highest number of sharing consumers
 o Which consumers drive it and to what extent it leads to a more sustainable model of consumption
Finding the niche in the economy

1. Global sensitivity analysis (full parameter space) (Dosi et al., 2018)
 a. Elementary effect (EE) One-At-a-Time (OAT)
 o Identify the parameters most relevant to model output
 b. Near Orthogonal Latin Hypercube (NOLH) DoE
 o Optimise the number of model sampling points to be observed for the selected parameters
 c. Kirging meta-model estimation
 o Spatial interpolation method study the parameter space in which the number of sharing consumers is maximised
 d. Sobol decomposition
 o Evaluate the individual and interaction effects of parameters on the variance of the model output.

2. Global sensitivity analysis (small parameter space)
 a. NOLH DoE
 b. Kirging meta model
 c. Sobol decomposition

3. Transition from individual ownership to shared ownership
 o Model configuration that produces the highest number of sharing consumers
 o Which consumers drive it and to what extent it leads to a more sustainable model of consumption

4. Policy intervention
 o Unit price of the service/good
 o Size and cost of the good
Model initialisation (1/4) – EE (180 sim)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Benchmark</th>
<th>Min.</th>
<th>Max.</th>
<th>OAT EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>$S=S_2=S_3$</td>
<td>600</td>
<td>200</td>
<td>1000</td>
<td>✓</td>
</tr>
<tr>
<td>Investment</td>
<td>$I=I_2=I_3$</td>
<td>1300</td>
<td>600</td>
<td>2000</td>
<td>✓</td>
</tr>
<tr>
<td>Price</td>
<td>$p=p_1=p_2=p_3$</td>
<td>1.5</td>
<td>1</td>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>Consumer features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>d_{delta}</td>
<td>30</td>
<td>10</td>
<td>50</td>
<td>✓</td>
</tr>
<tr>
<td>Demand</td>
<td>d_{mean}</td>
<td>50</td>
<td>30</td>
<td>80</td>
<td>✓</td>
</tr>
<tr>
<td>Income</td>
<td>e_{delta}</td>
<td>450</td>
<td>100</td>
<td>800</td>
<td>✓</td>
</tr>
<tr>
<td>Income</td>
<td>e_{mean}</td>
<td>900</td>
<td>600</td>
<td>1200</td>
<td>✓</td>
</tr>
<tr>
<td>Preference for income</td>
<td>θ_{delta}</td>
<td>0.25</td>
<td>0.05</td>
<td>0.49</td>
<td>✓</td>
</tr>
<tr>
<td>Preference for income</td>
<td>θ_{mean}</td>
<td>0.5</td>
<td>0.25</td>
<td>0.75</td>
<td>✓</td>
</tr>
<tr>
<td>Preference for demand</td>
<td>α_{delta}</td>
<td>0.25</td>
<td>0.05</td>
<td>0.49</td>
<td>✓</td>
</tr>
<tr>
<td>Preference for demand</td>
<td>α_{mean}</td>
<td>0.5</td>
<td>0.25</td>
<td>0.75</td>
<td>✓</td>
</tr>
<tr>
<td>Preference for contribution</td>
<td>β_{delta}</td>
<td>0.25</td>
<td>0.05</td>
<td>0.49</td>
<td>✓</td>
</tr>
<tr>
<td>Preference for contribution</td>
<td>β_{mean}</td>
<td>0.5</td>
<td>0.25</td>
<td>0.75</td>
<td>✓</td>
</tr>
<tr>
<td>Public service features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest value of K</td>
<td>k</td>
<td>0.5</td>
<td>0.5</td>
<td>0.75</td>
<td>✓</td>
</tr>
<tr>
<td>Steepness</td>
<td>r</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>✓</td>
</tr>
<tr>
<td>Sigmoid midpoint</td>
<td>g</td>
<td>0.5</td>
<td>0.25</td>
<td>0.75</td>
<td>✓</td>
</tr>
<tr>
<td>General provider capacity</td>
<td>Z</td>
<td>0.75</td>
<td>0.5</td>
<td>1</td>
<td>✓</td>
</tr>
</tbody>
</table>
Elementary Effect

\(\sigma \): Provides an estimate of the interaction effects with the other parameters (non-linear and non-additive effects of each parameter).

\(\mu \text{.star} \): The overall effect of each parameter on the model outcome (shared purchase).
Elementary Effect

sigma:
Provides an estimate of the interaction effects with the other parameters (non-linear and non-additive effects of each parameter)

mu.star:
The overall effect of each parameter on the model outcome (shared purchase)
Model initialisation (2/4) – NOLH (562 sim)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Benchmark</th>
<th>Min.</th>
<th>Max.</th>
<th>NOLH Kriging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>$S=S_2=S_3$</td>
<td>600</td>
<td>200</td>
<td>1000</td>
<td>✓</td>
</tr>
<tr>
<td>Investment</td>
<td>$I=I_2=I_3$</td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>$p=p_1=p_2=p_3$</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>d_{delta}</td>
<td>30</td>
<td>80</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>d_{mean}</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ϵ_{delta}</td>
<td>450</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>ϵ_{mean}</td>
<td>900</td>
<td>1200</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Preference for income</td>
<td>θ_{delta}</td>
<td>0.25</td>
<td>0.05</td>
<td>0.49</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>θ_{mean}</td>
<td>0.5</td>
<td>0.75</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Preference for demand division rule</td>
<td>α_{delta}</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>α_{mean}</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preference for contribution division rule</td>
<td>β_{delta}</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>β_{mean}</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public service features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest value of K</td>
<td>k</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steepness</td>
<td>r</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigmoid midpoint</td>
<td>g</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General provider capacity</td>
<td>Z</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Few agents opt for shared purchase

- Only a niche group of consumers chooses the shared purchase option
- Higher demand
- Medium-low average preference for income
- Small good are shared

➢ Best three simulations to reduce the space
Model initialisation (3/4) – NOLH small (562 sim)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Benchmark Niche (a)</th>
<th>Min (c)</th>
<th>Max (d)</th>
<th>NOLH Kriging (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>$S=S_2=S_3$</td>
<td>460</td>
<td>260</td>
<td>660</td>
<td>✓</td>
</tr>
<tr>
<td>Investment</td>
<td>$I=I_2=I_3$</td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>$p=p_1=p_2=p_3$</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>d_{delta}</td>
<td>30</td>
<td>55</td>
<td>67</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>d_{mean}</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e_{delta}</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e_{mean}</td>
<td>850</td>
<td>710</td>
<td>990</td>
<td>✓</td>
</tr>
<tr>
<td>Preference for income</td>
<td>θ_{delta}</td>
<td>0.125</td>
<td>0.05</td>
<td>0.20</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>θ_{mean}</td>
<td>0.34</td>
<td></td>
<td>0.43</td>
<td>✓</td>
</tr>
<tr>
<td>Preference for demand</td>
<td>α_{delta}</td>
<td>0.25</td>
<td>0.25</td>
<td>0.75</td>
<td>✓</td>
</tr>
<tr>
<td>division rule</td>
<td>α_{mean}</td>
<td>0.55</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preference for contribution</td>
<td>β_{delta}</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>division rule</td>
<td>β_{mean}</td>
<td>0.645</td>
<td>0.61</td>
<td>0.68</td>
<td>✓</td>
</tr>
<tr>
<td>Public service features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest value of K</td>
<td>k</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steepness</td>
<td>r</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigmoid midpoint</td>
<td>g</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General provider capacity</td>
<td>Z</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
High shared purchase in the smaller space

- Shared purchasers is significantly different from zero
- Mid-low preferences for income
- Mid-low preferences for the demand division rule
- Low good capacity (80% variance)

➤ Best simulation is the niche
Model initialisation (4/4) - Niche

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Initialisation</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>$S=S_2=S_3$</td>
<td>315.58</td>
<td>✓</td>
</tr>
<tr>
<td>Investment</td>
<td>$I=I_2=I_3$</td>
<td>1300</td>
<td>✓</td>
</tr>
<tr>
<td>Price</td>
<td>$p=p_1=p_2=p_3$</td>
<td>1.5</td>
<td>✓</td>
</tr>
<tr>
<td>Consumer features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>d_{delta}</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d_{mean}</td>
<td>64.63</td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>e_{delta}</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e_{mean}</td>
<td>931.92</td>
<td></td>
</tr>
<tr>
<td>Preference for income</td>
<td>θ_{delta}</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ_{mean}</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Preference for demand</td>
<td>α_{delta}</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>division rule</td>
<td>α_{mean}</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Preference for contribution</td>
<td>β_{delta}</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>division rule</td>
<td>β_{mean}</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Public service features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest value of K</td>
<td>k</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Steepness</td>
<td>r</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sigmoid midpoint</td>
<td>g</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>General provider capacity</td>
<td>Z</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>
Transition to Shared Purchase in the niche

From individual to shared purchase
Transition to Shared Purchase in the niche

From individual to shared purchase

-7.5% goods purchased yearly
Transition to Shared Purchase in the niche

-7.5% goods purchased yearly

From individual to shared purchase

Demand (d)	High	Low	High
Income (e)	Mid-low	High	Low
Pref. Income (θ)	Mid-high	Low	High
Policy Intervention

(a) p_1

(b) p_2

(c) p_3
Policy Intervention

(a) p_1

(b) p_2

(c) p_3

(a) Shared_Purchase

(b) Individual_Purchase

(c) Public_Service

(d)
Conclusions

Contribution
- Modelling transition from individual to shared ownership
- Evolutionary model of coalition formation and diffusion
- Apply advanced method of sensitivity analysis in ABM (and find niche in the economy)
Conclusions

Contribution
- Modelling transition from individual to shared ownership
- Evolutionary model of coalition formation and diffusion
- Apply advanced method of sensitivity analysis in ABM (and find niche in the economy)

Findings
- Only a niche decides to shift
- High demand and low-mid income, buy smaller goods
- Fractional ownership allows doing more with less (SDGs) – with not sustainability concerns
Conclusions

Contribution
Modelling transition from individual to shared ownership
Evolutionary model of coalition formation and diffusion
Apply advanced method of sensitivity analysis in ABM (and find niche in the economy)

Findings
Only a niche decides to shift
High demand and low-mid income, buy smaller goods
Fractional ownership allows doing more with less (SDGs) – with not sustainability concerns

Applications
Transportation sector (reduces individual ownership, private cars)
Opportunities for expensive goods with high capacity (autonomous or driverless vehicles?)
Conclusions

Contribution
- Modelling transition from individual to shared ownership
- Evolutionary model of coalition formation and diffusion
- Apply advanced method of sensitivity analysis in ABM (and find niche in the economy)

Findings
- Only a niche decides to shift
- High demand and low-mid income, buy smaller goods
- Fractional ownership allows doing more with less (SDGs) – with not sustainability concerns

Applications
- Transportation sector (reduces individual ownership, private cars)
- Opportunities for expensive goods with high capacity (autonomous or driverless vehicles?)

Policy interventions
- Incentives or lower tariffs to reduce unitary cost or increase prices for individual owners
- Define right capacity and cost for policy (improve efficiency and effectiveness)
Thank you!

Francesco Pasimeni: f.pasimeni@sussex.ac.uk
Back-up
The agent-based model (ABM)

• Extends previous model (Pasimeni and Ciarli, 2018)

• Sequential games of coalition formation with the “best reply” type of adjustment dynamic
 - (Bloch 1995; Bloch 1996; Mutuswami and Winter 2002)

• Utility function in the evolutionary game theory of coalition formation
 - (Axtell 1999, 2002)

• Co-evolution of coalition formation and diffusion of shared goods

Results

• Bigger coalition are formed to invest in very expensive common goods
 → less individual contribution, despite higher negotiation

• Connections increase rapidity of information flow
 → determine higher diffusion

• There is not 100% diffusion
 → not all agents are better off in coalition
ABM extension

<table>
<thead>
<tr>
<th></th>
<th>New ABM</th>
<th>Previous Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Random</td>
<td>Regular</td>
</tr>
<tr>
<td>Shared good</td>
<td>Movable</td>
<td>Non-movable</td>
</tr>
<tr>
<td>Good’s life cycle</td>
<td>Definite (replacement/substitution)</td>
<td>Indefinite (no replacement/substitution)</td>
</tr>
<tr>
<td>Consumption options</td>
<td>1) No purchase</td>
<td>1) No purchase</td>
</tr>
<tr>
<td></td>
<td>2) Individual purchase</td>
<td>2) Purchase in coalition</td>
</tr>
<tr>
<td></td>
<td>3) Shared purchase</td>
<td></td>
</tr>
<tr>
<td>Congestion to access service of</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>general provider (option No purchase)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The utility functions (Cobb-Douglas)

1) Public provider (no purchase)

\[U_{i1} = [e_i - d_i p_1]^{\theta_i} (d_i * K)^{1-\theta_i} \]

- 1) Preference for income
- 2) Preference for consumption

2) Individual purchase:

\[U_{i2} = [e_i - (d_i p_2 + \frac{I}{L_2})]^{\theta_i} (d)^{1-\theta_i} \]

- a. Proportional division rule based on agent’s demand
- b. Proportional division rule based on agent’s monetary contribution
- c. Equal shared division rule based on group size

3) Shared purchase:

\[U_{i3} = [e_i - (d_i p_3 + x_i)]^{\theta_i} \left\{ (d_i + D_{-i}) \left[\frac{\alpha_i d_i}{d_i + D_{-i}} + (1 - \alpha_i) \left(\frac{\beta_i x_i}{x_i + X_{-i}} + \frac{1 - \beta_i}{N} \right) \right] \right\}^{1-\theta_i} \]

- 1) Preference for income
- 2) Preference for consumption (in group)
- a. Proportional division rule based on agent’s demand
- b. Proportional division rule based on agent’s monetary contribution
- c. Equal shared division rule based on group size

\[\sum d_i \leq S \quad \text{and} \quad L_3 = \frac{S}{\sum d_i} \quad \text{and} \quad \frac{I}{L_3} \leq \sum x_i \leq \frac{I}{L_3} * 1.1 \]
Coalition Formation & Diffusion

(a) *Initiator* (in black) in regular network structure

Initiators (strong motivation)
1. Tie links with others
2. Starts the process of group formation

Knowledge diffusion & Network formation
Coordination & Coalition evaluation

\[
W_t = \max[W_{t-1}; \min[1; Adv + (\text{Sharing Adopters}_{t-1})^\xi]]
\]
Group Formation – Evaluation and decision

1) No_Purchase

<table>
<thead>
<tr>
<th>Agent</th>
<th>d</th>
<th>L3</th>
<th>I3 L3</th>
<th>xi</th>
<th>U3</th>
<th>U1</th>
<th>c1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>72</td>
<td>101</td>
<td>169</td>
<td>251</td>
<td>137</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>127</td>
<td>169</td>
<td>288</td>
<td>251</td>
<td>149</td>
<td>550</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>76</td>
<td>138</td>
<td>288</td>
<td>251</td>
<td>143</td>
<td>350</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>101</td>
<td>175</td>
<td>347</td>
<td>347</td>
<td>149</td>
<td>450</td>
</tr>
</tbody>
</table>

2) Individual_Purchase

<table>
<thead>
<tr>
<th>Agent</th>
<th>d</th>
<th>L3</th>
<th>I3 L3</th>
<th>xi</th>
<th>U3</th>
<th>U2</th>
<th>c2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>72</td>
<td>101</td>
<td>169</td>
<td>251</td>
<td>137</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>127</td>
<td>169</td>
<td>288</td>
<td>251</td>
<td>149</td>
<td>550</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>76</td>
<td>138</td>
<td>288</td>
<td>251</td>
<td>143</td>
<td>350</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>101</td>
<td>175</td>
<td>347</td>
<td>347</td>
<td>149</td>
<td>450</td>
</tr>
</tbody>
</table>

3) Shared_Purchase

<table>
<thead>
<tr>
<th>Agent</th>
<th>d</th>
<th>L3</th>
<th>I3 L3</th>
<th>xi</th>
<th>U3</th>
<th>U1</th>
<th>c1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>72</td>
<td>101</td>
<td>169</td>
<td>251</td>
<td>137</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>127</td>
<td>169</td>
<td>288</td>
<td>251</td>
<td>149</td>
<td>550</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>76</td>
<td>138</td>
<td>288</td>
<td>251</td>
<td>143</td>
<td>350</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>101</td>
<td>175</td>
<td>347</td>
<td>347</td>
<td>149</td>
<td>450</td>
</tr>
</tbody>
</table>

Agents’ utility

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) No_Purchase</td>
<td>137</td>
<td>149</td>
<td>143</td>
<td>149</td>
</tr>
<tr>
<td>2) Individual_Purchase</td>
<td>149</td>
<td>169</td>
<td>156</td>
<td>166</td>
</tr>
<tr>
<td>3) Shared_Purchase</td>
<td>169</td>
<td>175</td>
<td>182</td>
<td>181</td>
</tr>
<tr>
<td>1-2</td>
<td>163</td>
<td>169</td>
<td>164</td>
<td>164</td>
</tr>
<tr>
<td>2-4</td>
<td>167</td>
<td>173</td>
<td>171</td>
<td>171</td>
</tr>
</tbody>
</table>
Utility in sharing group

\[U_{i3} = \left[e_i - (d_i + p_3 + x_i) \right]^{\theta_i} \left\{ (d_i + D_{-i}) \left[\frac{\alpha_i d_i}{d_i + D_{-i}} + (1 - \alpha_i)(\frac{\beta_i x_i}{x_i + X_{-i}} + \frac{1 - \beta_i}{N}) \right] \right\}^{1 - \theta_i} \]