Legitimation and effects of mission-oriented innovation policy: A spillover perspective

Matthijs Janssen
Introduction

• R&D policy is commonly legitimized by the existence of spillover externalities
• R&D policy and STI policies are evolving into ‘mission-oriented innovation policy’ (MIP)
• MIP is systemic, cumulative and directional
• MIP involves firms in collective transformations

What spillover externalities may we expect?
Emerging mission-oriented policies

Overall outlines of ‘the rise of MIP policy’: (Mazzucato, 2018; Schot & Steinmueller, 2018; Foray, 2019, …)

• Evolution from generic to specific policy
• Targeted at ‘grand societal challenges’
• Innovation as one part of the solution
• Policy for socio-economic transformation
• “Systemic, preferential, experimental, adaptive”

Which MIP types (steps and their key features)?
<table>
<thead>
<tr>
<th>Objective / Policy priority</th>
<th>R&D policy</th>
<th>Mission-oriented R&D policy</th>
<th>Mission-oriented innovation policy</th>
<th>Mission-oriented policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost innovative economic activity</td>
<td>Boost innovative economic activity with wider societal impact</td>
<td>Spur complementary innovative solutions to societal problems</td>
<td>Search solutions, with or without innovative market parties</td>
<td></td>
</tr>
<tr>
<td>Rationale</td>
<td>Market failures</td>
<td>Same, especially coordination failures. + System failures (NIS)</td>
<td>System failures (TIS) / directional failures / etc.</td>
<td>Transition failures</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Push: Generic innovation policy</td>
<td>Push: Targeted innovation policy</td>
<td>Push-Pull: Demand-driven innovation policy / programs</td>
<td>Disentangle challenges into underlying problems</td>
</tr>
<tr>
<td>Transformation focus</td>
<td>Knowledge creation</td>
<td>Novelty creation</td>
<td>Novelty implementation + institutional change</td>
<td>Institutional change</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Industry (or science; not both)</td>
<td>Industry-science complex</td>
<td>Triple helix coordination</td>
<td>Policy makers + citizens + societal parties</td>
</tr>
<tr>
<td>Governance</td>
<td>Via policy execution agency</td>
<td>Priority setting (Top-down, or bottom-up)</td>
<td>Facilitate collective roadmap development (“top-down-bottom-up”)</td>
<td>Wicked = organize debate; Non-wicked = Project mgmt., procurement</td>
</tr>
<tr>
<td>Suitable instruments</td>
<td>Tax credits</td>
<td>Norms, subsidies, vouchers</td>
<td>Purchasing (PPI), regulation, spurring broad interaction</td>
<td>Public discourse, nudging, prizes, contests</td>
</tr>
<tr>
<td>Monitoring</td>
<td>R&D expenditure, patent rate, etc.</td>
<td>Do R&D and innovation efforts follow priorities?</td>
<td>Are regime pressures converging and cumulating?</td>
<td>Are we reaching the actual goals?</td>
</tr>
<tr>
<td>Challenges</td>
<td>Trickling down of knowledge production</td>
<td>Accumulation of inventions</td>
<td>Conflicting solution paths, market distortion</td>
<td>Identifying urgent + manageable problem</td>
</tr>
<tr>
<td>Examples (NL)</td>
<td>WBSO, Patent box</td>
<td>Valorisation grant, Topsector policy</td>
<td>Catalytic SBIR, Launching customership</td>
<td>Direct SBIR, National science agenda</td>
</tr>
</tbody>
</table>
Spillovers as a policy rationale

• Spillovers = innovation-based value benefitting other parties, without full compensation

• Innovation *externalities* (Breschi & Lissoni, 2001): not just unintended, but incomplete appropriation

• Implication: private returns below social returns

• Policy for *internalizing* externalities: e.g. via protection (IP) and/or compensation (subsidies)

• From an innovation systems and industrial policy perspective: policy for *augmenting* spillovers.
 But which ones?
Different types of spillovers

Rent spillovers (Grilliches, 1992)

- Innovation-induced value not fully charged in prices ("customer surplus not entirely captured")
- Inherent uncertainty of innovation obscures how customers will use it \Rightarrow Exaptation

Policy response targeted at strong competition, asymmetric information, transaction costs, etc.
Different types of spillovers

Business stealing (Bloom et al., 2013)

- Firms using their innovation to capture a disproportional large share of the market.
- The R&D investor appropriates more than it creates; it is a *negative spillover* (good for the firm, bad for society)

Policy response: competition law
Different types of spillovers

Knowledge spillovers (Hall et al., 2009; Aghion & Jaravel)

- ‘Technical’ knowledge (stemming from e.g. research, production, usage) informing others on how to do something. *Codified* or *tacit*.
- *Public good* nature if not protected \rightarrow Imitation
- Leakage of knowledge can cause positive or negative *product rivalry effect* (Bloom et al., 2013)

Policy response targeted at protection and compensation
Different types of spillovers

Absorption externalities (Bye et al., 2011)

- Unaccounted improvements in absorptive capacity → Enhanced ability to receive and use spillovers (Cohen and Levinthal, 1989)

Network trust

- Unaccounted improvements in reputation and partnership possibilities

Policy response: capacity + system building
Different types of spillovers

Information externalities (Hausmann & Rodrik, 2002)

- ‘Commercial’ knowledge informing others on the existence of some unfulfilled demand.
- Typically the result of self-discovery processes.
- *Public good* nature \rightarrow Imitation (‘crowding in’)

Policy response: *new industrial policy* driving bottom-up entrepreneurial experimentation (Rodrik, 2004)

- Also: *green industrial policy* (Rodrik, 2014)
Different types of spillovers

Coordination externalities (Rodrik, 2004)

- Collective benefits due to *complementarities* between innovation activities (private & public)
 - Regime pressures, infrastructure, regulation, etc.

- Firms yield more than they can appropriate; (selfish?) contributions to niche development → system transformation as a *club good*.
 - Similar to ‘supply-side’ network externalities, or adoption externalities (Arthur, 1983; Foray, 2019)

Policy response: transformative innovation policy (Weber & Rohracher, 2012; Schot & Steinmueller, 2018)
An integrated spillover framework

- Coordination (adoption) externalities
- Information externalities
- Business stealing
- Rent spillovers

• Knowledge spillovers (specific)
• Knowledge spillovers (generic)

R&D (process) → Innovation (output) → Turnover (outcome)

Appropriated value

Mission policy
Mission-oriented innovation policy
Mission-oriented R&D policy
R&D policy
Empirical illustration (case study)

How are the various spillover types dealt with?

- **‘Technology Push’**
 - Valorisation Grant (n = 170)
 - Grant for further development of academic inventions with commercial and societal potential
 - → Mission-oriented R&D policy
 - SBIR Catalytic (n = 65)
 - Government uses calls to support sets of innovation projects reducing the need for public services
 - → Mission-oriented innovation policy
 - SBIR Direct (n = 41)
 - Government uses calls to support innovation projects aimed at improving its own public services
 - → Mission policy

- **‘Demand Pull’**

Appendix of this presentation
Discussion

(In)consistencies rationale vs. spillovers

• Mission-oriented R&D: mostly new knowledge
• M-o innovation policy: transformative effects
• Solution policy: just incidental (‘local’) adoption?
 → Solution-focus can hamper scaling up?
 MIP-related policy myopia

• New positioning expects even more transformation, without policy changes
 → *MIP-related policy drift*
Discussion

The relation between MIP approaches

- **Evolution** of innovation policies
 - From R&D policy to mission-oriented innovation programs, or ‘working back’ from solution-oriented policy?

- **Extension** of innovation policies
 - Complementarities in the policy mix?
Janssen, Hekkert & Frenken (2019)
Conclusions

- Parallel literatures on MIP and spillovers. *Spillovers matter when MIP involves markets.*
- STI policies evolving into MIP correspond with *broader range of relevant spillover types*
- Case study: not evident that new policies address and monitor the appropriate set of spillovers, fitting their rationale → *MIP policy myopia & MIP policy drift*

- Further research: Combination of MIP types?
 - Also: measurement of (neglected) spillovers
Thank you!

M.j.janssen@uu.nl / janssen@dialogic.nl
Mission-oriented Innovation Policy Observatory

Societal challenges

Missions (goals+ambitions) Mission Governance Mission-oriented Innovation Policy

Transformative governance

Innovation system

Innovation paths

Innovation paths

Catalytic functions
Empirical illustration

How are the various spillover types dealt with?

Case study: Dutch SBIR schemes

- *Valorisation Grant*
- Public Procurement of Innovation (PPI)
 - *Catalytic SBIR*
 - *Direct SBIR*

- >20 interviews
- 267 survey responses
Empirical illustration: spillovers

To what extent do you regard your project as an experiment at the frontier of a broader innovation path?

Answer: "To a reasonable/large extent"
Empirical illustration: spillovers

Do other parties already provide products/services based on your project?

Answer: "To a reasonable/large extent"

- Valorisation Grant: 47%
- Catalytic SBIR: 67%
- Direct SBIR: 43%
Empirical illustration: spillovers

Contributions to innovation development/adoPTION
(Answer: “To a reasonable/large extent”)

- Driving relevant knowledge development
- Enhancing knowledge exchange
- Boosting market formation
- Creation of public legitimacy
- Removing legal barriers
- Improving government policies

Valorisation Grant Catalytic SBIR Direct SBIR