Employment effects of innovation and R&D private and public collaboration: the role of knowledge spillovers in Europe

Luigi ALDIERI Bruna BRUNO Luigi SENATORE
Concetto Paolo VINCI

Department of Economics and Statistics
University of Salerno

7th European Conference on Corporate R&D and Innovation 25-27 September 2019 Seville
Outline

1. Aims and Literature
 - Aims
 - Innovation and Employment
 - Innovation and Employment
 - The role of Public and Private R&D
 - The role of Public and Private R&D
 - The role of Public and Private R&D

2. Theoretical Framework
 - Theoretical Framework 1
 - Theoretical Framework 2
 - Theoretical Framework 3

3. Empirical Framework
 - Empirical Framework 1
 - Empirical Framework 2
 - Empirical Framework 2
 - Empirical Framework 3
 - Empirical Framework 4
Aims

- We analyze the connections between the public and private investments in R&D in Europe. (Still in progress)
Aims

- We analyze the connections between the public and private investments in R&D in Europe. (Still in progress)
- We develop a theoretical analysis
Aims

- We analyze the connections between the public and private investments in R&D in Europe. (Still in progress)
- We develop a theoretical analysis
- We build an empirical analysis
Aims

- We analyze the connections between the public and private investments in R&D in Europe. (Still in progress)
- We develop a theoretical analysis
- We build an empirical analysis
- We use the specification similar to Faggio and Overman (2014) and introduce an instrumental variable based on the shift-share approach (Bartik, 1991)
Aims

- We analyze the connections between the public and private investments in R&D in Europe. (Still in progress)
- We develop a theoretical analysis
- We build an empirical analysis
- We use the specification similar to Faggio and Overman (2014) and introduce an instrumental variable based on the shift-share approach (Bartik, 1991)
- We explore the role of knowledge spillovers on leading firms employment in Europe. (started and in progress)
We analyze the connections between the public and private investments in R&D in Europe. (Still in progress)

We develop a theoretical analysis

We build an empirical analysis

We use the specification similar to Faggio and Overman (2014) and introduce an instrumental variable based on the shift-share approach (Bartik, 1991)

We explore the role of knowledge spillovers on leading firms employment in Europe. (started and in progress)

We provide some useful implications for European innovation policy strategy (started and in progress)
As mentioned in Piva and Vivarelli (2018a, 2018b) there are two different effects of innovation on employment: product innovations produce the emergence of new markets and induce positive job-creation effects, while process innovations lead to technological unemployment due to increased labour productivity or higher cost.
Innovation: Employment or Unemployment?

- As mentioned in Piva and Vivarelli (2018a, 2018b) there are two different effects of innovation on employment: product innovations produce the emergence of new markets and induce positive job-creation effects, while process innovations lead to technological unemployment due to increased labour productivity or higher cost.
- Indirect compensation and substitution effects could counterbalance the potential increase or reduction in employment deriving from product and process innovations.
As mentioned in Piva and Vivarelli (2018a, 2018b) there are two different effects of innovation on employment: product innovations produce the emergence of new markets and induce positive job-creation effects, while process innovations lead to technological unemployment due to increased labour productivity or higher cost.

Indirect compensation and substitution effects could counterbalance the potential increase or reduction in employment deriving from product and process innovations.

Product Innovations: earlier research has identified a positive impact on employment (Marx 1961; Say 1964) and recently Dachs et al. (2017), defined as Welfare Effect.
As mentioned in Piva and Vivarelli (2018a, 2018b) there are two different effects of innovation on employment: product innovations produce the emergence of new markets and induce positive job-creation effects, while process innovations lead to technological unemployment due to increased labour productivity or higher cost.

Indirect compensation and substitution effects could counterbalance the potential increase or reduction in employment deriving from product and process innovations.

Product Innovations: earlier research has identified a positive impact on employment (Marx 1961; Say 1964) and recently Dachs et al. (2017), defined as Welfare Effect.

Innovation: Employment or Unemployment?

- Bianchini and Pellegrino (2019) examine the effect of persistence in process and product innovations on the employment dynamics in Spain. They illustrate how the firm might react in terms of employment growth under the influence of the degree of persistence in their process and product innovations.
Bianchini and Pellegrino (2019) examine the effect of persistence in process and product innovations on the employment dynamics in Spain. They illustrate how the firm might react in terms of employment growth under the influence of the degree of persistence in their process and product innovations.

Guarascio and Tamagni (2019) observe the relationship between the long-run contribution of innovation persistence to sales growth and market share dynamics in Spain. They consider employment and sales as interchangeable measures of firm size and want to show the link between innovation persistence and market success.
David et al. (2000) determine the relationship between public and private R&D in order to build tangible and effective economic policies to stimulate the employment dynamics. The aim is to understand if the public and private R&D spending are complementary or additively related and to clearly identify if they are substitute or if the public R&D crowds out the private one.
The role of Public and Private R&D

- Lopez-Rodriguez and Martinez-Lopez (2017) use an augmented macro-theoretical growth model to demonstrate that besides R&D the non-R&D innovation activities play a key role as main drivers of total factor productivities in Europe. They don’t separate public from private R&D but show that R&D and non-R&D are statistically significant and economically relevant in technological catch-up. In addition they find that the impact of R&D on total factor productivity growth is twice as big as that of non-R&D in Europe.
Bianchini et al. (2019) measure the impact of public R&D subsidies on business R&D investment in heterogeneous institutional frameworks within the Europe. Public support for research and innovation activities may leverage private sources when firms are constrained by lower quality public institutions, reducing uncertainty and favouring private risky investments. The results of their analysis reject full crowding-out supporting the idea that the beneficiary firms invest more in R&D than non-beneficiaries in all regions, including those with lower institutional quality.
The role of Public and Private R&D

Bianchini et al. (2019) develop an institutional index based on existing indicators and group regional economies on the basis of the quality of their public institutions. Analysing a comprehensive sample of Spanish firms observed over more than 20 years and a larger dataset of 13 European economies drawn from the Community Innovation Survey 2014 they check the policy impact in terms of private R&D expenditure for companies operating in different institutional frameworks.
Theoretical Framework 1
The production function of the representative entrepreneur

- \(T = \) Technological Progress
Theoretical Framework 1
The production function of the representative entrepreneur

- \(T = \) Technological Progress
- \(B = \) Capital augmenting technology
Theoretical Framework 1
The production function of the representative entrepreneur

- \(T = \) Technological Progress
- \(B = \) Capital augmenting technology
- \(A = \) Labor augmenting technology
Theoretical Framework 1
The production function of the representative entrepreneur

- \(T = \) Technological Progress
- \(B = \) Capital augmenting technology
- \(A = \) Labor augmenting technology
- \(K = \) one-to-one the total knowledge capital
Theoretical Framework 1
The production function of the representative entrepreneur

- \(T = \) Technological Progress
- \(B = \) Capital augmenting technology
- \(A = \) Labor augmenting technology
- \(K = \) one-to-one the total knowledge capital
- \(K^R = \) capital of rival ones
Theoretical Framework 1
The production function of the representative entrepreneur

- \(T \) = Technological Progress
- \(B \) = Capital augmenting technology
- \(A \) = Labor augmenting technology
- \(K \) = one-to-one the total knowledge capital
- \(K^R \) = capital of rival ones
- \(K^G \) = public knowledge capital
Theoretical Framework 1
The production function of the representative entrepreneur

- **T** = Technological Progress
- **B** = Capital augmenting technology
- **A** = Labor augmenting technology
- **K** = one-to-one the total knowledge capital
- **K^R** = capital of rival ones
- **K^G** = public knowledge capital
- **w/p** = real wage
Theoretical Framework 1
The production function of the representative entrepreneur

- \(T \) = Technological Progress
- \(B \) = Capital augmenting technology
- \(A \) = Labor augmenting technology
- \(K \) = one-to-one the total knowledge capital
- \(K^R \) = capital of rival ones
- \(K^G \) = public knowledge capital
- \(w/p \) = real wage
- \(cu/p \) = real user cost of capital
Theoretical Framework 1
The production function of the representative entrepreneur

- \(T \) = Technological Progress
- \(B \) = Capital augmenting technology
- \(A \) = Labor augmenting technology
- \(K \) = one-to-one the total knowledge capital
- \(K^R \) = capital of rival ones
- \(K^G \) = public knowledge capital
- \(w/p \) = real wage
- \(cu/p \) = real user cost of capital
- \(C \) = Capital
Theoretical Framework 2
F.O.C. for Profit Maximization

\[\log L = \log Y + (\sigma - 1) \log T(K, K^R, K^G) - \sigma \log \frac{w}{p} + (\sigma - 1) \log A(K, K^R, K^G) \]

with

\[\sigma = \frac{1}{1 + \rho} \]

captures the labor and physical capital substitution elasticity

\[\log L = \log C - \sigma \log \frac{w}{p} + \sigma \log \frac{cu}{p} + (\sigma - 1) \log \left[\frac{A(K, K^R, K^G)}{B(K, K^R, K^G)} \right] \]
Theoretical Framework 2
F.O.C. for Profit Maximization

- \(\lg L = \lg Y + (\sigma - 1) \lg T(K, K^R, K^G) - \sigma \lg \frac{w}{p} + (\sigma - 1) \log A(K, K^R, K^G) \)
- \(\lg C = \lg Y + (\sigma - 1) \lg T(K, K^R, K^G) - \sigma \lg \frac{cu}{p} + (\sigma - 1) \log B(K, K^R, K^G) \)

with

\[\sigma = \frac{1}{1 + \rho} \]

captures the labor and physical capital substitution elasticity.

- \(\lg L = \lg C - \sigma \lg \frac{w}{p} + \sigma \lg \frac{cu}{p} + (\sigma - 1) \log \frac{A(K, K^R, K^G)}{B(K, K^R, K^G)} \)

R&D stock \((K)\), knowledge spillovers \((K^R)\) and public R&D \((K^G)\) are utilised as proxies of technological progress.
Theoretical Framework 3
Proxies and First-difference version to remove the unobserved term u_i

$$ \frac{A_{i,t}(K, K^R, K^G)}{B_{i,t}(K, K^R, K^G)} $$

- Technological Progress

$$ \Delta \ln L_{i,t} = \beta_0 \Delta \ln C_{i,t} + \beta_1 \Delta \ln w_{i,t} + \beta_2 \Delta \ln K_{i,t} + \beta_3 \Delta \ln K_{i,t}^R \beta_4 \Delta \ln K_{i,t}^G + \beta_5 \Delta K \ast K_{i,t}^G + \Delta \nu_i + \Delta \mu_{i,t} $$
Theoretical Framework 3
Proxies and First-difference version to remove the unobserved term u_i

$A_{i,t}(K, K^R, K^G)$

$B_{i,t}(K, K^R, K^G)$

- Technological Progress
- Because of unavailability of wages data in our dataset, we use the physical capital stock as proxy, as in Bogliacino (2014)

$\Delta \ln L_{i,t} = \beta_0 \Delta \ln C_{i,t} + \beta_1 \Delta \ln w_{i,t} + \beta_2 \Delta \ln K_{i,t} + \beta_3 \Delta \ln K_{i,t}^R + \beta_4 \Delta \ln K_{i,t}^G + \beta_5 \Delta K \ast K_{i,t}^G + \Delta \nu_i + \Delta \mu_{i,t}$
Theoretical Framework 3
Proxies and First-difference version to remove the unobserved term \(u_i \)

\[
\frac{A_{i,t}(K, K^R, K^G)}{B_{i,t}(K, K^R, K^G)}
\]

- Technological Progress

- Because of unavailability of wages data in our dataset, we use the physical capital stock as proxy, as in Bogliacino (2014)

- to identify the crowding effect, we introduce also the interaction variable between private R&D \((K)\) and public R&D \((K^G)\)

\[
\Delta \ln L_{i,t} = \beta_0 \Delta \ln C_{i,t} + \beta_1 \Delta \ln w_{i,t} + \beta_2 \Delta \ln K_{i,t} + \beta_3 \Delta \ln K_{i,t}^R + \beta_4 \Delta \ln K_{i,t}^G + \beta_5 \Delta K \ast K_{i,t}^G + \Delta v_i + \Delta \mu_{i,t}
\]
Empirical Framework 1
Data Description and Methodology

- EU R&D investment scoreboards that have been issued by the JRC-IPTS between 2002 and 2010 (European Commission, 2011)
Empirical Framework 1

Data Description and Methodology

- EU R&D investment scoreboards that have been issued by the JRC-IPTS between 2002 and 2010 (European Commission, 2011)

- The second database is REGPAT (January 2012) which is issued by the OECD. REGPAT collects data on patents and allocates them to each country according to the addresses of the applicant and inventors

Data have been deflated by using national GDP price deflators where 2007 appears as the reference year.

The R&D and physical capital stocks are constructed by using a perpetual inventory method (Griliches, 1979) with a depreciation rate of 0.15 for the R&D capital stock and 0.08 for the physical capital stock.
Empirical Framework 1
Data Description and Methodology

- EU R&D investment scoreboards that have been issued by the JRC-IPTS between 2002 and 2010 (European Commission, 2011)

- The second database is REGPAT (January 2012) which is issued by the OECD. REGPAT collects data on patents and allocates them to each country according to the addresses of the applicant and inventors
Empirical Framework 1

Data Description and Methodology

- EU R&D investment scoreboards that have been issued by the JRC-IPTS between 2002 and 2010 (European Commission, 2011)
- The second database is REGPAT (January 2012) which is issued by the OECD. REGPAT collects data on patents and allocates them to each country according to the addresses of the applicant and inventors
- Data have been deflated by using national GDP price deflators where 2007 appears as the reference year
Empirical Framework 1
Data Description and Methodology

- EU R&D investment scoreboards that have been issued by the JRC-IPTS between 2002 and 2010 (European Commission, 2011)
- The second database is REGPAT (January 2012) which is issued by the OECD. REGPAT collects data on patents and allocates them to each country according to the addresses of the applicant and inventors.
- Data have been deflated by using national GDP price deflators where 2007 appears as the reference year.
- The R&D and physical capital stocks are constructed by using a perpetual inventory method (Griliches, 1979) with a depreciation rate of 0.15 for the R&D capital stock and 0.08 for the physical capital stock.
Empirical Framework 2
Data Description and Methodology

For each firm the scoreboard reports data on:

- Net sales (S)
Empirical Framework 2
Data Description and Methodology

For each firm the scoreboard reports data on:

- Net sales (S)
- Number of employees (L)
Empirical Framework 2
Data Description and Methodology

For each firm the scoreboard reports data on:
- Net sales (S)
- Number of employees (L)
- Annual capital expenditure (C)
Empirical Framework 2
Data Description and Methodology

For each firm the scoreboard reports data on:

- Net sales (S)
- Number of employees (L)
- Annual capital expenditure (C)
- Annual R&D expenditure (K)

For each firm the scoreboard reports data on:

- Net sales (S)
- Number of employees (L)
- Annual capital expenditure (C)
- Annual R&D expenditure (K)
Empirical Framework 2
Data Description and Methodology

For each firm the scoreboard reports data on:

- Net sales (S)
- Number of employees (L)
- Annual capital expenditure (C)
- Annual R&D expenditure (K)
- The two-digit industrial sector according to the Industrial Classification Benchmark (ICB)
Empirical Framework 2
Data Description and Methodology

For each firm the scoreboard reports data on:

- Net sales (S)
- Number of employees (L)
- Annual capital expenditure (C)
- Annual R&D expenditure (K)
- The two-digit industrial sector according to the Industrial Classification Benchmark (ICB)
- The matching procedure has been done manually as described in Aldieri and Vinci (2016). In order to measure public R&D (K^G), we use data from World Bank database. In particular, it is the ratio between the government expenditures in R&D and GDP.
Empirical Framework 2
Data Description and Methodology

For each firm the scoreboard reports data on:

- Net sales (S)
- Number of employees (L)
- Annual capital expenditure (C)
- Annual R&D expenditure (K)
- The two-digit industrial sector according to the Industrial Classification Benchmark (ICB)
- The matching procedure has been done manually as described in Aldieri and Vinci (2016). In order to measure public R&D (K^G), we use data from World Bank database. In particular, it is the ratio between the government expenditures in R&D and GDP
- We use the measure of spillovers based on patent data (Jaffe proximity measure) as a proxy of knowledge spillovers
We use the specification similar to Faggio and Overman (2014) where we introduce an instrumental variable based on the shift-share approach (Bartik, 1991), which is widely used in regional economics literature or causal inference.
We use the specification similar to Faggio and Overman (2014) where we introduce an instrumental variable based on the shift-share approach (Bartik, 1991), which is widely used in regional economics literature or causal inference.

To alleviate the critique that the initial share can be correlated with other factors, we use many control variables relative to demographic and labor composition that affect employment at regional level.
We consider structural equation linking employment growth to private and public R&D:

\[\text{lc} = \tau + \beta_0 \text{PrR&D}_c + \beta_1 \text{PubR&D}_c + \epsilon_c \]

- \(\text{lc} \) is employment growth in country \(c \)
- \(\text{PrR&D}_c \) is private R&D in country \(c \)
- \(\text{PubR&D}_c \) is public R&D in country \(c \)
- \(\epsilon_c \) is a structural error term correlated with \(\text{PrR&D}_c \) and \(\text{PubR&D}_c \)

Our estimands of interest are \(\beta_0 \) and \(\beta_1 \).

We use the Bartik instruments to estimate them.
We consider structural equation linking employment growth to private and public R&D:

\[l_c = \tau + \beta_0 PrR&D_c + \beta_1 PubR&D_c + \epsilon_c \]
Empirical Framework 2
Methodology: Bartik (1991) and Faggio and Overman (2014)

- We consider structural equation linking employment growth to private and public R&D:

\[l_c = \tau + \beta_0 PrR&D_c + \beta_1 PubR&D_c + \epsilon_c \]

- \(l_c \) is employment growth in country \(c \)
Empirical Framework 2
Methodology: Bartik (1991) and Faggio and Overman (2014)

- We consider structural equation linking employment growth to private and public R&D:
 \[l_c = \tau + \beta_0 PrR&D_c + \beta_1 PubR&D_c + \epsilon_c \]
- \(l_c \) is employment growth in country \(c \)
- \(PrR&D_c \) is private R&D in country \(c \)
Empirical Framework 2
Methodology: Bartik (1991) and Faggio and Overman (2014)

- We consider structural equation linking employment growth to private and public R&D:
 \[l_c = \tau + \beta_0 PrR&D_c + \beta_1 PubR&D_c + \epsilon_c \]

- \(l_c \) is employment growth in country \(c \)

- \(PrR&D_c \) is private R&D in country \(c \)

- \(PubR&D_c \) is public R&D in country \(c \)
Employment effects of innovation and R&D private and public collaboration: the role of knowledge spillovers in Europe

Luigi ALDIERI, Bruna BRUNO, Luigi SENATORE, Concetto Paolo VINCI

Aims and Literature

Aims
Innovation and Employment
Innovation and Employment
The role of Public and Private R&D
The role of Public and Private R&D

Empirical Framework 2
Methodology: Bartik (1991) and Faggio and Overman (2014)

- We consider structural equation linking employment growth to private and public R&D:
 \[l_c = \tau + \beta_0 PrR&D_c + \beta_1 PubR&D_c + \epsilon_c \]
- \(l_c \) is employment growth in country \(c \)
- \(PrR&D_c \) is private R&D in country \(c \)
- \(PubR&D_c \) is public R&D in country \(c \)
- \(\epsilon_c \) is a structural error term correlated with \(PrR&D_c \) and \(PubR&D_c \)
Empirical Framework 2
Methodology: Bartik (1991) and Faggio and Overman (2014)

- We consider structural equation linking employment growth to private and public R&D:
 \[l_c = \tau + \beta_0 PrR&D_c + \beta_1 PubR&D_c + \epsilon_c \]
 - \(l_c \) is employment growth in country \(c \)
 - \(PrR&D_c \) is private R&D in country \(c \)
 - \(PubR&D_c \) is public R&D in country \(c \)
 - \(\epsilon_c \) is a structural error term correlated with \(PrR&D_c \) and \(PubR&D_c \)
 - Our estimands of interest are \(\beta_0 \) and \(\beta_1 \)
 We use the Bartik instruments to estimate them
Empirical Framework 2
Methodology: Bartik (1991) and Faggio and Overman (2014)

- The Bartik instrument combines two accounting identities: it is the product of industry shares and local industry growth rates
Empirical Framework 2
Methodology: Bartik (1991) and Faggio and Overman (2014)

- The Bartik instrument combines two accounting identities: it is the product of industry shares and local industry growth rates
- \(PrR&D_c = \sum_k z_c k g_c k \)
The Bartik instrument combines two accounting identities: it is the product of industry shares and local industry growth rates

\[PrR&D_c = \sum_k z_{ck}g_{ck} \]

\[Pub&D_c = \sum_k z_{ck}g_{ck} \]
Empirical Framework 2
Methodology: Bartik (1991) and Faggio and Overman (2014)

- The Bartik instrument combines two accounting identities: it is the product of industry shares and local industry growth rates.
 - \(PrR&D_c = \sum_k z_{ck}g_{ck} \)
 - \(Pub&D_c = \sum_k z_{ck}g_{ck} \)
 - \(z_{ck} \) is the share of country c’s private (or public) R&D in industry \(k \), and \(g_{ck} \) is the growth rate of industry \(k \) in country c.
Empirical Framework 2
Methodology: Bartik (1991) and Faggio and Overman (2014)

- We decompose the industry growth rate as:
We decompose the industry growth rate as:

\[g_{ck} = g_k + g_{c_k}^* \]
Empirical Framework 2
Methodology: Bartik (1991) and Faggio and Overman (2014)

- We decompose the industry growth rate as:
 \[g_{c_k} = g_k + g_{c_k}^* \]

 \(g_k \) is the industry growth rate and \(g_{c_k}^* \) is the idiosyncratic industry country growth rate.
Empirical Framework 2
Methodology: Bartik (1991) and Faggio and Overman (2014)

- We decompose the industry growth rate as:
 \[g_{ck} = g_k + g_{ck}^* \]

- \(g_k \) is the industry growth rate and \(g_{ck}^* \) is the idiosyncratic industry country growth rate

- The Bartik instrument is the product of the industry country shares and the industry component of the growth rates:
 \[B_c = \sum_k z_{ck} g_k \]
We decompose the industry growth rate as:

\[g_{ck} = g_k + g^*_{ck} \]

\(g_k \) is the industry growth rate and \(g^*_{ck} \) is the idiosyncratic industry country growth rate.

The Bartik instrument is the product of the industry country shares and the industry component of the growth rates:

\[B_c = \sum_k z_{ck} g_k \]

We compute the TSLS estimation where \(B_c \) is explanatory variable of the first stage with private and public R&D as the dependent variables.
Results

Table 1 presents the summary statistics for our sample.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LnS</td>
<td>8.14</td>
<td>1.803</td>
</tr>
<tr>
<td>LnL</td>
<td>9.60</td>
<td>1.693</td>
</tr>
<tr>
<td>LnC</td>
<td>7.19</td>
<td>2.065</td>
</tr>
<tr>
<td>LnK</td>
<td>6.46</td>
<td>1.721</td>
</tr>
<tr>
<td>LnK^G</td>
<td>0.71</td>
<td>0.134</td>
</tr>
<tr>
<td>z</td>
<td>0.15</td>
<td>0.108</td>
</tr>
<tr>
<td>g</td>
<td>0.06</td>
<td>0.166</td>
</tr>
</tbody>
</table>

*Number of observations: 2099
Results

Table 2 presents the results related to crowding out effect

<table>
<thead>
<tr>
<th></th>
<th>TSLS</th>
<th>Est.</th>
<th>S. E(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln S)</td>
<td>0.55</td>
<td>***</td>
<td>(0.044)</td>
</tr>
<tr>
<td>(\ln C)</td>
<td>0.21</td>
<td>***</td>
<td>(0.024)</td>
</tr>
<tr>
<td>(\ln K)</td>
<td>0.47</td>
<td>***</td>
<td>(0.153)</td>
</tr>
<tr>
<td>(\ln K^G)</td>
<td>-0.21</td>
<td></td>
<td>(0.364)</td>
</tr>
<tr>
<td>(\ln K \times \ln K^G)</td>
<td>-0.47</td>
<td>***</td>
<td>(0.148)</td>
</tr>
</tbody>
</table>

\(R^2\) \([0.472]\)

\(a\): heteroskedastic-consistent standard errors, which are clustered around the firm and the year. **\(p\)-values significant at the 1\%, 5\%, 10\%. Country, Sector and Time dummies are included.
Results and Preliminary Policy Implications

- We evidence a statistically significant role of employment effects of innovation for European firms.
Results and Preliminary Policy Implications

- We evidence a statistically significant role of employment effects of innovation for European firms.
- We identify a positive impact of private R&D on employment growth.
Results and Preliminary Policy Implications

- We evidence a statistically significant role of employment effects of innovation for European firms.
- We identify a positive impact of private R&D on employment growth.
- We find a crowding effect between private and public R&D with respect to employment growth.

In all the European geographical area considered globally rises up a crowding out effect. It is fundamental to begin a process in order to coordinate public and private R&D investment in this area that exhibited a high propensity to innovate during the last twenty years.
Results and Preliminary Policy Implications

- We evidence a statistically significant role of employment effects of innovation for European firms.
- We identify a positive impact of private R&D on employment growth.
- We find a crowding effect between private and public R&D with respect to employment growth.
- In all the European geographical area considered globally rises up a crowding out effect.
Results and Preliminary Policy Implications

- We evidence a statistically significant role of employment effects of innovation for European firms.
- We identify a positive impact of private R&D on employment growth.
- We find a crowding effect between private and public R&D with respect to employment growth.
- In all the European geographical area considered globally rises up a crowding out effect.
- It is fundamental to begin a process in order to coordinate public and private R&D investment in this area that exhibited a high propensity to innovate during the last twenty years.
Results and Preliminary Policy Implications

The collaboration between firms and public institute to develop new researches it is crucial to become their investments in R&D complement.
Results and Preliminary Policy Implications

- The collaboration between firms and public institute to develop new researches it is crucial to become their investments in R&D complement

- A mechanism that creates a continental innovation system involving firms and public research institutes in different geographical areas can support strongly the innovation processes avoiding crowding out effect and collecting in more efficient way the resources employed from the different actors in the innovative activities
THE END

THANK YOU FOR YOUR ATTENTION...WE ARE STILL WORKING ON IT BY NOW