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Abstract 

 

We examine whether government sponsored R&D induces the development of clean 
technologies with a high impact on subsequent technological development. The analysis 
uses information on USPTO patents granted between 2005 and 2015 and combines 
different methods to control for possible sorting of projects into public funding and for 
non-random (public) treatment. We also assess the distributional effect of government 
sponsored R&D. Results show that patents from public funded projects have a 
significantly higher impact and that this is particularly true for highly cited patents, thus 
supporting a role for technology-push policies in determining a clean technological 
transition. 
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Executive summary 
 

This work presents a critical analysis of the role of public policy in the development and adoption of clean 
technologies, particularly the influence of government-sponsored Research and Development (R&D) programs. 
The study aims to provide empirical evidence of the effect of public R&D policies on advancing clean 
technologies with substantial knowledge spillovers. 

 

Despite the global commitment to reduce greenhouse gas emissions, the level of public support for clean 
technologies has been inconsistent across OECD countries since 2011. The development of clean technologies 
has stagnated, and the private sector's incentive to innovate in this area seems to have decreased. This calls 
for a reassessment of the effectiveness of R&D policies in promoting the development of clean technologies. 

 

The work underscores the need for public action in the economics of climate change. Market-based policies, 
such as carbon-tax, are not enough as they fail to internalise the long-term benefits of superior, clean 
technologies. Therefore, R&D subsidies are necessary to redirect innovation from dirty to clean technologies. 

 

The study posits that science-push policies, such as public R&D, are expected to have a profound impact on 
new clean technologies due to their novelty and role as foundational elements for subsequent technological 
advancements. Public R&D is crucial in promoting the development of high-impact clean technologies, which 
form the basis of a new technological paradigm. 

 

In our empirical investigation, we use patents granted by the USPTO between 2005 and 2015 linked to 
procurement contracts or research grants with a US funding agency to examine the effect of technology-push 
policy. The results reveal a significant impact of government-supported clean technologies on subsequent 
innovations, with supported technologies receiving about 26% more citations than non-supported ones within 
a 5-year period. This effect was noted among clean technologies with the highest impact on subsequent 
technological development. 

 

This analysis provides two significant implications: 

 

 Climate change policy modelling should acknowledge the potential influence of policies on the 
knowledge spillovers of technologies rather than treating them as exogenous. 

 In the implementation of climate change policies, R&D support should accompany standard market 
pull interventions to expedite technical change towards sustainable growth. This argument provides a 
rationale for reversing the declining trend in technology support policies observed in OECD countries 
since 2011. 

 

In conclusion, this work highlights the critical role of government-sponsored R&D in fostering impactful clean 
technologies. The findings provide a compelling argument for policy makers to reinforce their R&D programs 
to achieve sustainable growth and mitigate climate change. 
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1 Introduction 
 

The reduction of greenhouse gas emissions is the most important mean to mitigate climate change (IPCC, 
2022). Innovation policy packages have enabled cost reductions and supported global adoption of low-
emission technologies. However, an important part of emission reduction will depend on new clean 
technologies that are still embryonic and marked by high technological and market uncertainty (IEA, 2021). 
This represents an obstacle to private initiatives and makes the support of public policy crucial for their 
development. To this end, some governments have reinforced their Research and Development (R&D) 
programs to foster environmental innovation, like in the US with the ARPA-E scheme and in the EU with the 
Innovation Fund.  

Nevertheless, the public support to clean technologies is less systematic than it may appear. Across the OECD, 
from 2011 the (stringency) level of technology support policies has declined until 2016 and has then 
experienced a scattered increase, but without reaching the 2011-peak (Kruse et al., 2022). This has occurred 
while the development of clean technologies, as revealed by environmental patents, has stopped growing and 
embarked along a continuous slow down until the most recent years (Dechezleprêtre and Kruse, 2022; IEA, 
2020). Private incentives to develop new clean technologies might have decreased and evidence about the 
effectiveness of R&D policies in restoring them is thus needed to justify their budgeting. 

The relevance of public action is a well-recognised intrinsic feature of the economics of climate change (Stern, 
2008; Nordhaus, 2019). Among the different leverages, the role of public support to R&D has been less 
scrutinized compared to market-based and regulatory approaches. Despite its ascertained role in directing 
technical change towards sustainable growth, a gap remains about the strength of public R&D in playing this 
role: does it facilitate environmental innovations that act as steppingstones to subsequent technological 
developments? 

From a theoretical point of view, a recent stream of endogenous growth models applied to the environment 
have shown that policy is crucial for the development of clean technologies, given the path-dependent nature 
of technical change (Acemoglu et al., 2012; 2016; Hémous and Olsen, 2021). A sole market-based policy, such 
as carbon-tax, is not enough (Acemoglu et al., 2012). As the market keeps on allocating resources to 
innovation by looking at immediate profits, without retaining the discounted benefits that superior 
technologies will bring over the long run, the dirty technology sector may remain the first best allocation for 
incumbents even with a carbon tax. In order to redirect innovation from dirty to clean technologies, R&D 
subsidies are needed to make the market internalise the higher returns, private and social, of clean 
technologies in the long run. 

Following the same background, science-push policies like public R&D can be expected to have a deeper 
impact on new clean technologies, related to their novelty and their role as basic components for subsequent 
technological development (Trajtenberg et al., 1997). Unlike market-pull policies, which act on private 
incentives in the short run, science-push policies increase the expected social value of clean technologies, 
whose time horizon is longer and provide inventors with incentives to work on more radical innovations. 
Similarly to what has been found for other technologies (Acemoglu and Linn, 2004; Dranove et al., 2020; 
Dubois et al., 2015; Finkelstein, 2004), public R&D is arguably needed to spur the development of high impact 
clean technologies, which represent basic steppingstones in the unfolding of a new technological paradigm. 
Despite the intuition behind this argument, its supporting theoretical mechanisms have not been fully 
addressed yet. Furthermore, the extent to which this specific impact of R&D policy actually happens still lacks 
systematic empirical evidence.  

To fill this gap, we examine whether government sponsored R&D facilitates the development of clean 
technologies with large knowledge spillovers on subsequent innovations. Given the path-dependency that 
characterises technical change (Acemoglu et al., 2012), an important part of the policy impact in fact passes 
through the (knowledge) value that newly developed green technologies have for the development of 
subsequent ones. Consistently with the path-dependency hypothesis, should policy induced clean technologies 
be marked by larger spillovers, they could foster the diffusion of clean knowledge through their influence on 
subsequent technological developments. 

We do expect this to happen by referring to firms’ decisions to invest in radically new research projects 
(Azoulay et al., 2019), which yield innovative outcomes of high impact in terms of knowledge spillovers. These 
projects are typically risky and early-stage, and are thus marked by marginal costs that overcome their 
marginal benefits to a larger extent than lower impact projects. This is due to different mechanisms. To start 
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with, high impact innovative outcomes increase the risk of being imitated and this stimulates the innovator to 
delay their realisation over time (Mukherjee and Pennings, 2004). Furthermore, having a larger impact 
naturally increases the externalities that early innovators can dynamically have on later innovators, 
decreasing the returns that the former can appropriate and thus the incentives to undertake the relative 
investment (Scotchmer, 1991). For these reasons, firms generally find unprofitable to invest in high impact 
projects and their realisation is thus crucially linked to the public support. By the same token, the marginal 
technology that government sponsored R&D supports, can be expected to have higher knowledge spillovers 
than non-supported ones. 

This differential effect has been found by Azoulay et al. (2019) looking at the impact of scientific grants on 
firms’ patenting in the pharmaceutical and biotechnology industries. The underlying mechanisms leading to 
their results are expected to hold also with respect to clean technologies. These are technologies whose 
development relies on the combination of more diverse and novel technological components than non-clean 
ones, and which thus require a larger and more uncertain cognitive effort (Barbieri et al., 2020). Furthermore, 
investments in clean technologies have been proved to yield positive returns to firms only in the presence of 
high energy costs, thus increasing their market uncertainty (Popp, 2002). This further constrains the incentives 
for firms to invest in new, high-impact clean technologies. Such technologies, arguably, are more likely to 
receive support from government-sponsored R&D. 

We investigate the extent to which this is actually the case, by filling a gap in the empirical research about the 
development of clean technologies, mainly focused on environmental policies that act on the (private) market 
side, like: shocks inducing changes in energy prices (Noailly and Smeets, 2015; Hassler et al., 2021), emission 
trading systems (Calel and Dechezleprêtre 2016), changes in emission standards (Rozendaal and Vollebergh, 
2021), international environmental agreements (Dugoua, 2021), and carbon and environmental taxes (Aghion 
et al., 2016). Empirical analyses of R&D policies are instead more scattered. With respect to the automobile 
industry, Aghion et al. (2016) showed that temporary R&D subsidies designed to increase energy efficiency 
can favour the development of incremental clean (grey) innovations, while radically clean innovations remain 
unaffected. Working on the R&D grants issued by the US Department of Energy, Howell (2017) shows that 
recipient small businesses in clean energy sectors increase their patenting, VC financing, and survival rate, 
while these effects are non-significant in conventional (dirty) energy technologies like natural gas and coal. 
Additional evidence regarding the impact of other types of technology support policies, particularly those 
focusing on demand-side strategies such as public green procurement, is limited and primarily found in a few 
select works (Ghisetti 2017; Krieger and Zipperer, 2022). 

We add to this stream of empirical research focusing on government sponsored R&D in the US and provide 
evidence of its role in fostering the development of clean technologies with a high impact on subsequent 
innovations. We rely on patents granted at the USPTO between 2005 and 2015 to applicants linked to at least 
one procurement contract or research grant with a US funding agency, and investigate the impact of 
technology-push policy through a quasi-experimental estimation framework. 

Using citations from other patents to proxy the impact on subsequent technological development, we show 
that the effect is remarkable in size: in a 5-years window government supported clean technologies have 
about 26% more citations than non-supported ones. The size of the effect remains sizeable also when we 
further disentangle citations to consider different types of knowledge spillovers, entailing gradually more 
stringent channels of diffusion. The knowledge spillovers generated by government supported clean 
technologies do not appear less (or more) localized within the US than privately funded ones but they have a 
higher geographical scope, pertaining to technologies developed by applicants from a larger basket of 
countries. We also uncover the distributional effect of government R&D support, which increases along the 
distribution of citations and is significant only among those clean technologies with the highest impact on 
subsequent technological development. The results are robust to a battery of robustness checks that we have 
implemented to validate the effect of government R&D support on the knowledge spillovers of clean 
technologies.  

Our results have two immediate implications. First, they suggest that the modelling of climate change policies 
should overcome the assumption that knowledge spillovers of technologies can be treated as exogenous. Not 
only policies can support the development of clean technologies with larger spillovers than dirty ones as 
showed by Dechezleprêtre et al. (2017); technology-push policies increase the spillovers also among clean 
technologies, with implications on how R&D investments and learning-by-doing should be modeled.  

Second, in the undertaking of climate change policy, our results suggest that an R&D support should 
accompany more standard market pull interventions, not only to direct technical change towards more 
sustainable growth patterns, but also to foster the speed of technical change along the same direction. This is 
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an important argument to reverse the decreasing trend in technology support policies, which OECD countries 
have been showing from the 2011-peak. 

Our paper contributes to three streams of literature. First, we speak to the literature on the economics of 
climate change (Nordhaus, 2019) and consider the role of innovation in its mitigation. Notably, we focus on 
the effect of a largely neglected but economically relevant policy leverage, government sponsored R&D, on 
fostering the impact of clean innovation. 

Second, we contribute to the literature on directed technical change and the environment (Acemoglu et al, 
2012; Hemous and Olsen, 2021) in two respects. We focus on the impact that government sponsored R&D 
has on the development of new green technologies with a high impact on the development of subsequent 
innovations. In addition, we enlarge the scope of previous empirical applications and provide the first 
estimates of the effect that government sponsored R&D has on the generation of impactful clean 
technologies considering the whole spectrum of technologies related to climate change mitigation and 
adaptation; this allows us to go beyond energy-production technologies or the dominant focus on the 
transport industry. 

Third, we contribute to an extensive literature in the economics of innovation, which has been looking at the 
innovation returns of public R&D through patent data (Howell, 2017; Plank & Doblinger, 2018; Azoulay et al., 
2019; Santoleri et al., 2023).  We add to this literature by posing an original focus on the effect of public R&D 
funding on innovation to face climate change and by proxying its impact through with patent citations. 
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2 Data and descriptive evidence 
In the empirical analysis we assess whether new clean technologies resulting from R&D projects supported by 
government funding have a higher impact on subsequent technological development than those developed 
without public support. To do that, we rely on different sources of data.  

From the 3PFL database (de Rassenfosse et al., 2019)  we retrieve information on procurement contracts and 
research grants signed by the US government, and on the patents filed to protect the resulting inventions. The 
3PFL database comprises information for 37,925 patents granted by the USPTO between 2005 and 2015.  

We then complement the 3PFL database by retrieving, from the European Patent Office’s worldwide 
statistical database (PATSTAT), all patents granted by the USPTO to the applicants contained in 3PFL during 
the same period. In other words, we add patents filed by the applicants in the 3PFL that are not linked to 
projects funded by the government. These patents are used to create the control group and to design a quasi-
experimental estimation framework.  

Finally, we gather further data on the patents included in our sample from the OECD Patent Quality Indicators 
Database (Squicciarini et al., 2013). We then compute a series of alternative patent citation measures to 
evaluate their impact on subsequent technological development, using the approach outlined by the OECD 
(2009).  The final dataset includes 464,123 patents, pertaining to 4,086 different applicants, 36,966 of which 
are associated to a public contract.  

Clean technologies are identified using the Y tagging of the Cooperative Patent Classification (CPC), and 
considering clean tech those patents classified with: i) code Y02, Technologies or applications for mitigation or 
adaptation against climate change, and/or; ii) code Y04, Information or communication technologies having an 
impact on other technology areas (of power generation and distribution).  

In the final sample, clean-tech patents have been granted to 1,420 different applicants. The share of clean 
tech patents in the sample is about 8%, just slightly higher than the share of clean tech patents over the total 
patents granted at the USPTO during the same period (7%). Despite our sample includes only applicants that 
have received at least one government contract, it is nevertheless capable to mimic the overall share of clean 
technologies.  

Table 1 reports summary statistics for the patents filed by applicants receiving at least one public contract in 
the 2005-2015 period. Patents in our sample receive on average 13.77 citations, belong to 3 applicants and 
have been developed by 3 inventors. The table further breaks down summary statistics by clean tech and 
non-clean tech patents. Clean tech patents receive on average more citations, are more original and have a 
higher number of inventors and applicants compared to non-clean tech ones. 

 

 

Table 1: Summary statistics 

 mean sd min max 

All patents (n = 464,123)     

fwd_cits5 13.77 42.35 0 3054 

Gvt R&D 0.0796 0.271 0 1 

Originality 0.784 0.171 0 0.989 

# of inventors 3.016 1.929 0 76 

 # of applicants 2.987 2.183 1 77 

Non clean tech patents (n=425,394)     
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fwd_cits5 13.46 41.34 0 3054 

Gvt R&D 0.077 0.266 0 1 

Originality 0.782 0.172 0 0.989 

# of inventors 3.004 1.919 0 76 

# of applicants 2.963 2.169 1 77 

Clean tech patents (n=38,729)     

fwd_cits5 17.14 52.05 0 1892 

Gvt R&D 0.114 0.318 0 1 

Originality 0.814 0.154 0 0.988 

# of inventors 3.144 2.035 0 61 

# of applicants 3.254 2.314 1 62 

 

Overall, nearly 8% of patents are developed within government funded projects; clean-tech patents are more 
likely to stem from government funding, 11.4% vs 7.7%. This suggests that the government concern for green 
technologies might have determined a non-random selection of funded projects, with a direct impact on the 
technologies developed by its contractors. 

Figure 1 shows a substantial heterogeneity in the government support among clean technologies. The share 
of supported clean-tech patents is larger than the non-supported ones in the reduction of GHG emissions 
related to energy (Y02E) and in adaptation to climate change (Y02A). Conversely, non-sponsored patents 
weights more than sponsored ones in climate change mitigation in transportation (Y02T) and climate change 
mitigation in ICT (Y02D).  
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Figure 1 - Share of government sponsored and non-sponsored patents by type of clean technology. 

 

Note: clean technologies are classified according to the 4-digit classes under the Y tagging of the CPC classification. Shares sum to more 
than 100% because patents can be associated to multiple CPC codes.  

 

This descriptive evidence suggests that government support to clean technologies cannot be deemed as 
random, as it shows a clear tendency towards specific technologies, while others are developed more 
frequently through non-supported projects.  
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3 Estimation strategy and variables 
We identify the effect of government support (treatment) on the development of impactful new (clean) 
technologies, by comparing the follow up citations of treated and non-treated patents in our sample. More 
precisely, we estimate a set of variants of the following equation: 

𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠௜ = 𝛽𝐺𝑣𝑡𝑅𝐷௜ + 𝑋𝛾 + 𝜆௧ + 𝛿௧௘௖ + 𝛼௘ + 𝑢௜ (1) 

where the dependent variable is the number of citations received by patent i in a 5-years window. Following a 
long tradition in the literature, forward citations of a focal patent can be deemed a reliable proxy of its 
knowledge spillovers (Caballero and Jaffe, 1993; Jaffe and Trajtenberg, 1999; Hall et al., 2001), and of the 
importance that the relative new technology has for the development of subsequent ones. The higher the 
number of forward citations of the patent, the larger its knowledge spillovers, the greater the role of the 
relative knowledge for future waves of technologies (Dechezleprêtre et al., 2014; Guillard et al., 2021). 

In equation (1) the parameter of interest is 𝛽, which captures the effect of government sponsored R&D 
(𝐺𝑣𝑡𝑅𝐷) on the development of impactful clean technologies. X is a vector of variables which includes: the 
number of inventors reported in a patent document (team size), the number of entities participating in the 
development of the invention (# of applicants) and a measure of the originality of the invention protected by 
the patent (originality). This measure is computed as 1 − ∑ 𝑠௝

ଶ௡
௝ୀଵ , where s is the share of citations from 

patents that contain IPC codes (j) different from those reported in the cited patent document (Hall et al., 
2001). 𝜆௧ refers to fixed effects for patent filing years and 𝛿௧௘௖ to technology specific fixed effects. 
Technology and time fixed effects guarantee that the observed variance in citations between treated and 
non-treated patents will effectively capture differences in their impact not deriving from differences in the 
underlying technological opportunities or from changing citation patterns over time.  

As we said, assuming that R&D government support can be deemed random is hardly sustainable, and the 
identification of the parameter 𝛽 requires careful a consideration of possible sources of bias. The treatment is 
unlikely to be independent from the potential outcomes of government supported R&D projects for at least 
three reasons.  

First, as shown in figure 1, the government tends to allocate more support to certain technologies over others, 
and the evaluation process may result in the selection of the most promising projects or companies for 
preferential treatment. Second, applicants might select those R&D projects characterized by higher 
uncertainty, and which are expected to take several years before being commercially exploitable, into the 
search for public support.  

To account for these possible sources of selection bias, we include a number of control variables and 
technology fixed effects. The variables team size, # of applicants and originality are meant to capture project-
specific characteristics that can lead to their selection into the treatment. The first two account for the 
relationship between collaboration in patenting and its research impact (Larivière et al., 2015). The originality 
variable instead accounts for the fact that riskier projects, relying on a diversified set of technical knowledge, 
can lead to more original and impactful inventions. Technology fixed effects are instead included to rebalance 
the estimation sample and level out the marked differences in the technological distributions of supported 
and non-supported patents (Figure 1). In an additional specification, we also adjust the regressions by 
including inverse probability weights from a selection into treatment equation, which includes all the variables 
used in equation (1).1  

Second, government funded projects generate internal spillovers, which can increase the overall R&D potential 
of the receiving applicant, thus leading to the violation of the stable unit treatment value assumption (SUTVA). 
To account for this potential SUTVA violation, we include in the estimates the entity level fixed effects, 𝛼௘ . 
This is a key element of our identification strategy. Its inclusion forces comparisons between treated and non-
treated patents at the applicant level, thus controlling also for common unobservable determinants that may 
explain the residual variation in our dependent variable. Moreover, in section IV.B we recalculate our 
dependent variable excluding self-citations. In this way, we rule out the impact on subsequent technological 
development deriving from in-house R&D projects. As we will discuss more in detail later, the detailed 

                                           
1 In Appendix B, Table B1, we report results using differently computed weights and investigate the robustness 

of our findings to problems related to misspecification of the selection into treatment model, through 
augmented inverse-probability-weighted (AIPW) and inverse-probability-weighted regression adjustment 
estimators (IPWRA). 
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spillover analysis allows us also to provide evidence on the effect of government support from a societal 
perspective. Among the robustness checks we also assess whether our results might suffer from 
heterogeneity treatment bias. 

A third source of bias may arise from sample selection. The sample contains only applicants that have 
received at least one public contract, which implies a selection per se: we do not observe the universe of US 
firms and research institutions. In other words, while we distinguish between treated and not-treated patents 
within a given applicant, we do not observe those patents developed by actors that have never received a 
public contract. However, it should be noted that the sample includes all applicants that have received a public 
contract in 10 years (the original 3PFL), implying that the selection is not specific to clean technologies; this 
makes possible selection issues less problematic in our case. Moreover, the selection may lead to an 
overestimation of the effect of government support only if the non-treated patents in the sample are 
consistently less impactful than patents developed by never-treated applicants. In other words, an 
overestimation of the effect of government support would require that the government systematically selects 
projects from applicants developing less impactful technologies. Currently, this seems to lack conclusive 
backing from both existing evidence and theoretical arguments. Further research can provide more insights 
and enhance our comprehension. 
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4 Results 

4.1 Core estimations  

The primary objective of this paper is to identify parameter 𝛽, which represents the effect of government 
R&D support on the development of impactful clean technologies. However, before discussing the main 
results we present estimations for the whole sample, including clean and non-clean technologies. The purpose 
of this analysis is to investigate whether government R&D support has a differentiated effect between the 
two in terms of subsequent technological development.  

Table 2 reports the results of equation (1) using the full sample of patents, including a dummy for clean 
technologies and its interaction with GvtRD; citations are considered for a time span of 5 years. Results in 
column 1 do not include applicant fixed effects, which are instead included in column 2. With the inclusion of 
applicant fixed effects the coefficient attached to government sponsored R&D change sign, from positive to 
negative. Due to the heterogeneity of the estimation sample in terms of technologies and applicants, we do 
not think the results should be taken as overall evidence of the effect of government support. Instead, the 
results suggest that the government might tend to factor in the applicants’ potential when evaluating 
projects: this confirms that intra-applicant comparisons are a key element to properly assess the effect of 
government R&D support on subsequent inventions.  

 

Table 2 - Effect of government sponsored R&D on subsequent innovation – all technologies. 

 # five-year forward citations 

 (1) (2) 

Gvt R&D 0.971** -1.134** 

 [0.262] [0.336] 

Clean tech 4.375** 4.287** 

 [0.261] [0.261] 

Gvt R&D x clean tech 3.184* 2.278* 

 [1.267] [0.935] 

originality 6.775** 5.189** 

 [0.266] [0.260] 

team size 1.896** 1.804** 

 [0.071] [0.071] 

# of applicants 0.010 -0.074 

 [0.070] [0.069] 

Filing year FE Yes Yes 

Technology FE Yes Yes 

Applicant FE No Yes 
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F-test 71.030 40.983 

R sq 0.047 0.117 

N (Patents) 464,123 462,745 

The unit of observation is patent application for the full sample. Dependent variable in all columns is the number of five-year forward 
citations.  All estimates are OLS and include technology fixed effect at the 3-digit CPC level. Robust standard errors in parenthesis. + 
p<0.1, * p<0.05, ** p<0.01. 

 

Table 2 confirms previous evidence showing that clean technologies have, on average, a higher impact on 
subsequent inventions compared to other technologies (Barbieri et al., 2020; Dechezlepre ̂tre et al., 2017). The 
table also points to a higher citation premium for government sponsored clean technologies compared to 
non-government sponsored ones. Overall, these preliminary estimates reveal that clean technologies behave 
differently than non-clean ones, also when considering the role of public support.  

We now focus on clean technologies and present the main results of the paper. Table 3 reports the estimates 
of equation (1) with respect to clean technologies, showing the absolute and relative effect of government 
R&D support on subsequent inventions. In column 1 we report the results of a linear specification without 
using inverse probability weighting scheme and applicant fixed effects. We then report results obtained by 
applying the inverse-probability weighting (column 2) and by adding applicant fixed effects (column 3). The 
comparison of the relative Average Treatment Effect (ATE) across columns, reported at the bottom of the 
table, allows us to evaluate the bias reduction deriving from the enrichment of the estimation approach. 

 

Table 3 - Effect of government sponsored R&D on subsequent innovation – clean technologies. 

 # five-year forward citations 

 (1) (2) (3) 

Gvt R&D 6.472** 6.107** 4.427** 

 [1.346] [1.341] [1.109] 

originality  26.221** 32.572** 16.635** 

 [1.409] [2.322] [1.819] 

Team size 4.272** 5.103** 3.520** 

 [0.384] [0.639] [0.420] 

# of applicants -0.951** -1.420* -0.864* 

 [0.362] [0.589] [0.436] 

Filing year FE Yes Yes Yes 

Technology FE Yes Yes Yes 

Applicant FE No No Yes 

Weighting scheme No IPW IPW 
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F test 29.197 20.829 16.011 

Relative ATE 0.394** 0.360** 0.258** 

 [0.084] [0.082] [0.066] 

R sq 0.053 0.052 0.421 

N (Patents) 38,729 36,726 36,245 

The unit of observation is patent application for the sample of cleantech patents. Dependent variable in all columns is the number of 
five-year forward citations. Relative ATEs are computed as the relative difference between potential outcome means for treated and 
untreated groups (∑ 𝑦పෝ

ே೟
௜ 𝑁௧ൗ -∑ 𝑦పෝ

ேೠ
௜ 𝑁௨ൗ )/ ∑ 𝑦పෝ

ேೠ
௜ 𝑁௨ൗ  where 𝑦పෝ  is the predicted value from the relevant regression model. Columns 2 

and 3 are estimated using 𝑝̂(𝑥௜)/(1 − 𝑝̂(𝑥௜)) to weight untreated observations and 1 otherwise. 𝑝̂(𝑥௜) is the propensity score 
calculated as per Table B.2 in appendix B. Figures B.1 and B.2 in Appendix B report statistics relative to the propensity score 
procedure used to compute weights, showing a good performance in terms of bias reduction. All estimates are OLS and include 
technology fixed effect at the 4-digit CPC level. Robust standard errors in parenthesis. + p<0.1, * p<0.05, ** p<0.01. 

 

The effect of government R&D support is high and significant in all the specifications. Interestingly, the bias 
reduction is particularly strong when including applicant fixed effects: the use of propensity score lowers the 
relative ATE (the ATE in terms of potential outcome) of public support by 5.7 percentage points, while when 
adding the fixed effects this reduces by an additional 10.7 percentage points.  

According to our preferred specification (column 3), government supported clean technologies have about 
26% more citations than non-supported ones within a 5-year window. In line with expectations, patents with a 
higher originality and a larger team size receive on average more citations, while somehow unexpectedly 
patents collaborated between more applicants show a lower number of citations. This last result may suggest 
that applicants tend to develop their more promising R&D projects (in terms of potential future impact) alone 
or in small collaborative settings. 

 

4.2 Disentangling the spillovers of government sponsored R&D 

In this section, we further disentangle the impact of government support in the development of impactful 
clean technologies by considering different types of knowledge spillovers.  

First, we consider the knowledge spillovers generated by public R&D support outside the sphere of the focal 
applicant, by excluding those generated by its own citations. To clean our dependent variable from self-
citations we use two different approaches: i) we eliminate a citation only if it is completely determined by the 
same applicant of the cited patent (noself_nostric); ii) we eliminate a citation if at least one applicant in the 
citing patent is also in the cited patent (noself_strict). In the former case, we rule out only sharp “intra-
applicant” spillovers, but still allow for knowledge spillovers deriving from collaborations of the same 
applicant in subsequent projects (if a patent with applicants A and B cite a patent of applicant A, we still count 
the citation). In the second case, we capture pure knowledge spillovers, i.e. inter-applicant spillovers, because 
none of the citing applicants should be involved in the development of the cited patent. The results are 
reported in columns (1) and (2) of Table 4. 

Second, we focus on the knowledge spillovers that flow from the applicants that have received government 
R&D support to the rest of the world. To do this, we exclude from our dependent variable all the citations 
from patents registered by applicants that have received at least one US public contract as recorded by the 
3PFL. Like in the case of self-citations, we compute these spillovers using a non-strict and a strict definition; 
results are reported in columns (3) and (4). 

Finally, we assess whether government R&D support helps generate clean technologies with higher 
international knowledge spillovers, thus having a higher impact on the subsequent technological development 
in other economies. To do so, we build two variables: i) cit_US, a binary variable taking value 1 is all citations 
of a given patent are generated only by US applicants (column 5); ii) geo_breadth, counting the number of 
applicant’s countries of the citing patents (column 6). 
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The results reported in Table 4 suggest that spillovers effects are rather strong and not localized among the 
applicants receiving public support. In fact, the coefficient attached to government sponsored R&D is 
statistically significant at the usual level in columns 1 to 4. The magnitude of the coefficient decreases when 
using the stricter definition of spillovers, which is consistent with the reduced number of citations considered. 
However, the relative average treatment effects do not vary substantially from the main estimations (see 
Table 3, column 3), confirming the sizeable effect of government support on follow up inventions.  

 

Table 4 - Effect of government sponsored R&D on different kinds of knowledge spillovers, clean technologies 

 (1) (2) (3) (4) (5) (6) 

 noself nostrict noself strict out nostrict out strict cit US geo breadth 

Gvt R&D 4.376** 3.151** 4.350** 2.176** 0.006 0.137+ 

 [1.017] [0.866] [1.051] [0.672] [0.007] [0.073] 

originality 15.795** 12.856** 16.104** 9.132** 0.171** 1.453** 

 [1.764] [1.655] [1.800] [1.241] [0.018] [0.119] 

Team size 3.049** 2.773** 3.259** 2.110** 0.010** 0.238** 

 [0.370] [0.360] [0.389] [0.262] [0.002] [0.019] 

# of applicants -0.692+ -0.824* -0.783+ -0.562* -0.003* -0.051** 

 [0.380] [0.372] [0.401] [0.268] [0.002] [0.019] 

Filing year FE Yes Yes Yes Yes Yes Yes 

Technology FE Yes Yes Yes Yes Yes Yes 

Applicant FE Yes Yes Yes Yes Yes Yes 

Weighting scheme IPW IPW IPW IPW IPW IPW 

Relative ATE 0.286** 0.256** 0.274** 0.230** 0.007** 0.041+ 

 [0.067] [0.071] [0.067] [0.072] [0.009] [0.022] 

N (Patents) 36,245 36,245 36,245 36,245 36,245 36,245 

The unit of observation is patent application for the sample of cleantech patents. Relative ATEs are computed as relative difference 
between potential outcome means for treated and untreated groups (∑ 𝑦పෝ

ே೟
௜ 𝑁௧ൗ -∑ 𝑦పෝ

ேೠ
௜ 𝑁௨ൗ )/ ∑ 𝑦పෝ

ேೠ
௜ 𝑁௨ൗ  where 𝑦పෝ  is the predicted 

value from the relevant regression model. All columns are estimated using 𝑝̂(𝑥௜)/(1 − 𝑝̂(𝑥௜))to weight untreated observations and 
1 otherwise. 𝑝̂(𝑥௜) is the propensity score calculated as per Table B2 in Appendix B. For the regression adjustment via propensity 
score, we enforce a common support by removing the 5% of the treatment observations at which the propensity score density of 
the control observations is at a minimum. All estimates are OLS and include technology fixed effect at the 4-digit CPC level. Robust 
standard errors in parenthesis. + p<0.1, * p<0.05, ** p<0.01. 

 

Results reported in columns 5 and 6 show that the spillovers generated by government supported clean 
patents are not more localized within the US than privately funded ones but have a higher geographical 
breadth: the technology is further developed by applicants from a larger basket of countries. This suggests 
that spillovers from government supported clean technologies may differ from those in other areas of 
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intervention. Moreover, in line with models of growth emphasizing the strategic complementarities in clean 
research across countries (Aghion et al., 2015; Dechezlepretre et al., 2017), the larger geographical scope of 
citations is consistent with the idea that policies supporting the development of clean technologies can have 
an effect in fostering the global generation of such technologies.  

 

4.3 Robustness tests 

In this section we present a battery of robustness checks to further corroborate our main results.  

First, while in our analysis we control for different types of spillovers and for observable differences in 
potential outcomes, with the data at stake we are not able to allocate budget at the patent level. The budget 
of government supported projects is not homogeneous and can be allocated to different activities other than 
R&D for technological development; moreover, there are cases of multiple patents linked to the same 
government supported project. This mean that the treatment might be not homogeneous, and we cannot 
directly model it. To assess whether the heterogeneity in the government R&D support can be an issue when 
trying to identify its effect on follow up citations, we run two ancillary regressions at the applicant level. In the 
first, we assess whether higher amounts of government support induce more clean tech patents. In the 
second, we assess whether higher amounts of government support lead to more citations to the overall 
portfolio of supported patents once controlling for their number. If the coefficient attached to government 
support is statistically significant in the former but not in the latter, this would be indirect evidence that the 
heterogeneity in the treatment is not a major issue when assessing its effect on the impact of supported 
clean tech on follow up innovations.   

The results reported in Table 5 suggest that this is the case. Higher amounts of government R&D support lead 
to a higher number of clean tech patents, but once controlling for clean tech patents it has not effect on the 
number of citations received.  

 

Table 5: The effect of government sponsored R&D on the quantity and quality of inventions - cleantech sample 

 (1) 

# green  

Gvt patents 

(2) 

# citations to  

green patents 

Amount of Gvt R&D  0.082** -1.497 

 [0.028] [0.996] 

# green Gvt patents  31.500** 

  [11.378] 

Avg. team size  0.128 37.426** 

 [0.123] [11.398] 

Avg. # of applicants 0.098 -0.014 

 [0.089] [10.099] 

Avg. originality -0.165 170.284 

 [1.185] [88.706] 
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Constant 2.483* -260.113* 

 [1.197] [103.976] 

R sq 0.320 0.328 

N (applicants) 868 868 

Regressions are based on the 868 applicants that received government sponsored R&D and developed green technologies. The dependent 
variable in column 1 is the number of green patents sponsored by public R&D and in column 2 the number of citations received by 
green government R&D sponsored patents. Gvt R&D amount is the total amount received by the applicant. Estimates in both 
columns include controls for the average number of inventors, average number of applicants, the average originality index and the 
share of patents in different cleantech technological classes. Column 2 includes also the number of number of green patents 
sponsored by public R&D. + p<0.1, * p<0.05, ** p<0.01 

 

 

Second, we run a randomised falsification test by randomly assigning treatment across our sample of clean 
tech patents while keeping the share of treated patents constant. We build 100 different replications of our 
favourite specification (Column 3 of Table 3) to assess whether a placebo government support would still 
exert a positive effect on forward citations. Figure 2 displays the coefficients attached to the placebo 
government R&D support for the 100 replications: the figure shows that we cannot reject the hypothesis that 
the coefficient is equal to zero, providing further evidence supporting our results.  

 

 

Figure 2: Randomised falsification test 

 
In the figure are reported the coefficients attached to GVT R&D (equation 1) when treatment is randomly distributed across clean 

patents. As in our preferred specification (Table 3, column 3), the estimations include applicant fixed effects and probability weights. 
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Third, we re-run our favourite specification by weighting observations by the inverse of the size of applicants’ 
clean tech patent portfolios. In our sample, the number of applicants’ observations is proportional to the 
number of their clean tech patents; giving the same weight to each applicant, this reweighting scheme 
ensures that results are not driven by applicants with larger portfolios. The results, reported in Table 6 column 
1, confirm the positive effect of government support. 

 

Table 2: Effect of green government sponsored R&D on subsequent innovation – robustness checks 

 # five-year forward 
citations 

# seven-year 
forward 
citations 

# five-year forward citations 

 (1) (2) (3) (4) (5) (6) 

Gvt sponsored R&D 6.593* 6.257** 6.411** 0.233** 3.733** 5.467* 

 [2.872] [1.232] [1.441] [0.048] [1.091] [2.436] 

originality index 32.189** 9.774** 20.327** 1.435** 16.433** 18.574** 

 [3.647] [1.287] [2.112] [0.134] [1.805] [4.651] 

Team size 6.222** 1.961** 4.491** 0.127** 3.446** 1.671** 

 [1.071] [0.254] [0.471] [0.009] [0.411] [0.349] 

# of applicants 0.056 -0.296 -1.078* -0.014 -0.900* 0.236 

 [1.193] [0.271] [0.478] [0.010] [0.424] [0.316] 

Filing year FE Yes Yes Yes Yes Yes Yes 

Technology FE Yes Yes Yes Yes Yes Yes 

Applicant FE No Yes Yes Yes Yes Yes 

Filing year X Tech FE No No No No Yes No 

Model OLS OLS OLS Poisson OLS OLS 

Weighting scheme GPAT IPW IPW IPW IPW IPW 

SEs Robust Robust Robust Robust Robust CPC-Year 

F test 5.826 15.888 17.994 . 52.906 5.103 

Rel ATE 0.358* 0.445** 0.284** 0.262** 0.216** 0.345* 

Rel ATE SE [0.160] [0.090] [0.065] [0.060] [0.065] [0.155] 

R sq 0.085 0.287 0.423 . 0.425 0.424 

N (Patents) 36,245 25,025 36,245 36,238 36,244 31,058 
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The unit of observation is patent application for the sample of cleantech patents. Dependent variables are the number of five-year 
forward citations in columns 1, 2, 4, 5 and 6 and the number of seven-year forward citations in column 3. Relative ATEs are 
computed as relative difference between potential outcome means for treated and untreated groups (∑ 𝑦పෝ

ே೟
௜ 𝑁௧ൗ -

∑ 𝑦పෝ
ேೠ
௜ 𝑁௨ൗ )/ ∑ 𝑦పෝ

ேೠ
௜ 𝑁௨ൗ  where 𝑦పෝ  is the predicted value from the relevant regression model. Column 1 regression is weighted by the 

inverse of the number of cleatech patents in the applicant portfolio. Columns 2 and 3 are estimated using 𝑝̂(𝑥௜)/(1 − 𝑝̂(𝑥௜))to 
weight untreated observations and 1 otherwise. 𝑝̂(𝑥௜) is the propensity score calculated as per Table B2 in Appendix B. For the 
regression adjustment via propensity score, we enforce a common support by removing the 5% of the treatment observations at 
which the propensity score density of the control observations is at a minimum. All estimates are OLS and include technology fixed 
effect at the 4-digit CPC level. Robust standard errors in parenthesis. + p<0.1, * p<0.05, ** p<0.01. 

 

Fourth, we test the robustness of our results against a more conservative definition of clean technologies. We 
build upon Dechezleprêtre et al. (2021) and define clean patents using 4-digit CPC technological classes 
Y02B, Y02C, Y02E and Y02T.2 Results from the estimation on this sub-set of clean technologies, reported in 
Table 6 column 2, still confirm our main results and possibly magnifies the effect of government support in 
terms of relative ATE. Column 3 in Table 6 further shows the results when using a 7-years window in the 
computation of the number of forward citations. While the coefficient attached to government support is 
higher than that for the 5-years window, the effect of government support in terms of relative ATE is in line 
with our main results. 

Column 4 in Table 6 presents the results for a (pseudo-)Poisson regression model with multiple high-
dimensional fixed effects (Correia, 2020), ensuring the robustness of our findings to the count data format of 
our dependent variable (number of citations). Column 5 incorporates fixed effects for each combination of 
patent filing year and technological class (CPC at the subclass level, e.g. Y02A). Finally, Column 6 reports 
results with standard errors clustered at the same level (patent filing year-technological class level).3 
Reassuringly, all robustness checks produce outcomes consistent with our baseline results. 

 

4.4 The distributional effects of government sponsored R&D 

In this section, we assess the distributional effects of R&D government support on follow up innovations. To 
do so, we implement the recentered influence function (RIF) of the unconditional quantile (Firpo et al., 2009), 
to evaluate the impact of changes in the non-treated to treated (government supported) status on quantiles 
of the marginal distribution of forward citations.  

Previous results could be eventually interpreted as follows: the government is able to systematically 
define/select technological needs/solutions with a potential higher impact on follow up innovations, compared 
to other actors in the economy. Despite lock-in effects and the possible local search performed by private 
actors, this is a rather strong result to be put forward. One can instead expect that in most cases the 
government support will not have a real effect. Conversely, it can be expected to incentivise research in 
research areas with lower expected private returns in the short term and thus increase the probability that 
some key technologies are developed. In other words, the (average) impact of government R&D support 
discussed above may be driven by the highly cited patents in the sample.  

Therefore, the relevance of assessing the distributional aspects of the effect found in the previous sections 
derives from the assumptions underlying average effects and the interpretation of the relative results. Figure 
3 shows the distribution of citations to clean tech patents comparing the group of patents resulting from 

                                           
2 These four CPC codes groups technologies related to buildings, to GHG capture and storage, to reduction of 

GHG in energy production and distribution, and to transportation. In other words, from our definition of 
clean tech we drop patents with codes: Y02A, Y02D, Y02P, Y02W and Y04S (see figure 1 for short labels). 

3 Recent discussions in the econometrics literature suggest that clustered standard errors may be overly 
conservative, and the appropriate level of clustering should be carefully chosen (Abadie et al., 2023). In 
our study, it is not advisable to cluster standard errors at the applicant level, due to the high number of 
clusters (1,400), many of which have few observations. Consequently, we have decided to cluster standard 
errors at the technology-year level, aligning with the evidence of a non-random distribution of government 
support at the technology level (see Figure 1) and potential yearly differences, resulting in 144 clusters. 
However, we had to exclude 5,187 patents because they were assigned to more than one 4-digit CPC code. 
For this reason, we do not apply clustered standard errors in all specifications. 
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projects supported by the government with that not originated by government supported R&D projects. The 
figure shows that the distribution of patents citations is rather skewed and suggests that differences between 
government supported and not supported patents are not constant along the distribution. At the bottom of the 
citation distribution supported and not supported patents do not differ much, with the latter showing a slightly 
higher fraction of patents. Instead, government sponsored cleantech patents are more frequent in the upper 
tail of the citation distribution, suggesting that the effect of government support operates through the 
development of most impactful clean technologies.    

 

Figure 3: Fraction of cleantech patents for government sponsored and non-sponsored patents, by number of citations. 

 

 

Table 7 reports the results of the RIF estimations on the quantiles of the citations distributions. Consistently 
with the argument and the descriptive evidence above, the effect of the government R&D support is visible 
only among the third and fourth quintile of the citations’ distribution, where it is quantifiable in about 8.1% 
and 8.6% citations with respect to the respective potential outcome. Interestingly, also the coefficients 
attached to originality sizably increases along the quintile of the distributions, confirming the general result 
that more original (and more risky) clean patents may have a higher impact on follow up innovation.  

 

Table 3: Effect of government sponsored R&D on subsequent innovation, distributional effects via RIF regressions for 
clean tech 

 (1) (2) (3) (4) 

 20th quantile 40th quantile 60th quantile 80th quantile 
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Gvt R&D 0.160 0.264 0.722* 1.610* 

 [0.101] [0.177] [0.343] [0.821] 

originality  1.827** 3.120** 5.982** 15.097** 

 [0.220] [0.311] [0.538] [1.320] 

Team size 0.122** 0.231** 0.521** 1.777** 

 [0.019] [0.030] [0.059] [0.176] 

# of applicants 0.018 0.004 -0.003 -0.325+ 

 [0.020] [0.031] [0.059] [0.171] 

Filing year FE Yes Yes Yes Yes 

Technology FE  Yes Yes Yes Yes 

Applicant FE Yes Yes Yes Yes 

Weighting scheme IPW IPW IPW IPW 

Relative ATE 0.069 0.054 0.081** 0.087+ 

 [0.044] [0.037] [0.039] [0.045] 

N (Patents) 36,726 36,726 36,726 36,726 

The unit of observation is patent application for the sample of cleantech patents. Dependent variables are the number of five-year 
forward citations. Relative ATEs are computed as relative difference between potential outcome means for treated and untreated 
groups (∑ 𝑦పෝ

ே೟
௜ 𝑁௧ൗ -∑ 𝑦పෝ

ேೠ
௜ 𝑁௨ൗ )/ ∑ 𝑦పෝ

ேೠ
௜ 𝑁௨ൗ  where 𝑦పෝ  is the predicted value from the relevant regression model. All columns are 

estimated using ௣ො(௫೔)

ଵି௣ො(௫೔)
 to weight untreated observations and 1 otherwise. 𝑝̂(𝑥௜) is the propensity score calculated as per Table B2 in 

Appendix B. For the regression adjustment via propensity score, we enforce a common support by removing the 5% of the 
treatment observations at which the propensity score density of the control observations is at a minimum. All estimates include 
technology fixed effect at the 4-digit CPC level. Robust standard errors in parenthesis. + p<0.1, * p<0.05, ** p<0.01. 

 

Finally, we further explore the distributional effect of government R&D support by running an ordered logit 
regression. By doing so, we do not take citations at their face value but rather sort patents according to their 
relative ranking, considering deciles of the citation distribution. This approach has the advantage of providing 
a framework not influenced by the fact that a good number of patents have no or few citations and that the 
variability in the patent citations at the bottom of the distribution is very small. Results, reported in figures B.5 
and B.6 are in line with the RIF regressions, the effect of government R&D support is statistically different 
from zero after the 5th decile. While the effect of government support remains strong and positive on average, 
it operates mainly by favouring the development of the most impactful clean technologies. 
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5 Concluding remarks 
Modern endogenous growth models applied to the environment have shown that science-push policies play an 
important role for the development of clean technologies (Acemoglu et al., 2012; 2016; Hémous and Olsen, 
2021). Facing the path-dependent nature of technical change, public support can help firms internalize the 
(high) long term social returns of clean technologies and break the cumulative advantages of dirty ones.  

In this work, we uncover the role of government R&D support in affecting the pace and direction of clean 
technological change, thus pointing to a crucial policy leverage for the green transition. Considering the 
importance of radically new research projects, which yield high impact innovative outcomes and retaining the 
firms’ obstacles to invest in them (Azoulay et al., 2019; Mukherjee and Pennings, 2004; Scotchmer, 1991), we 
have argued that a largely neglected but fundamental role of public R&D is inducing the development of 
clean technologies with high knowledge spillovers on subsequent ones. 

By building up a new dataset, comprising all USPTO patents granted between 2005 and 2015 to applicants 
that received procurement contracts or research grants from the US government, we have obtained robust 
evidence on the positive effect of US government R&D support through a quasi-experimental estimation 
framework. Technology-push policies can direct research efforts toward (specific) clean technologies and 
favour the development of technologies with a high impact on the subsequent generation of knowledge.  

The impact of the US government R&D support on high impactful clean technologies has been remarkable in 
size. Using forward citations from follow up patents as a proxy of knowledge spillovers, government 
supported clean technologies show about 26% more citations (in the following 5-years) than non-supported 
ones. By distinguishing intra- from inter-entities spillovers, we show that R&D government support facilitates 
clean innovations whose subsequent technological impact is also greater in social terms. R&D government 
support does not affect the domestic-foreign patterns of spillovers, but it widens their geographical 
distribution. Finally, the effect of R&D government support is notable in facilitating clean technologies that 
have the most fundamental basic role in supporting the unfolding of a new green technological paradigm. 

Our results have important implications both for the modelling of climate change policies and for their 
undertaking. In the former respect, theoretical conclusions about the direction of technical change towards 
sustainable growth should be based on more sophisticated hypotheses about the spillovers of clean and risky 
technologies and about their implications for R&D investments and learning. In the second respect, under the 
increasing pressure of climate change, our analysis provides a strong case to revert the overall decreasing 
trend in technology support policies and to reconsider their key-role within the packages of governments’ 
green policy interventions. 

Our results do also contribute to the advancement of academic literature along three different but 
interrelated research streams. First, we contribute to an enrichment of the literature on the economics of 
climate change, which highlights the importance of technology-push policies in mitigating its impacts. Second, 
providing empirical evidence on its relevance for the development of (the most) impactful clean technologies 
we enrich the literature on directed technical change and the environment with a new focus on the effect of 
government sponsored R&D on technological development. Finally, we add to the literature about the 
innovation returns of public R&D through patent data, by extending its assessment to clean patent data and 
to different types of knowledge spillovers. 

In doing so, we provide an original empirical link between the so-called “Nelson-Arrow paradigm” 
(Traijtenberg, 2012) in innovation policy that has been looking at the innovation returns of public R&D and the 
recent debate about public R&D in front of social challenges, of which environmental sustainability is for sure 
one of the most pressing (Foray et al., 2012). 
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A Data Construction 

 

From the 3PFL database (de Rassenfosse et al., 2019) we retrieve information on procurement contracts and 
research grants signed by the US government, and on the patents filed to protect the resulting inventions. The 
3PFL database comprises information for 37,925 patents granted by the USPTO between 2005 and 2015.  

 

In order to create the control group of non-treated patents we proceeded as follows:  

 

i) The 3PFL does not provide a code that can be directly used in Patstat to identify the patent applicants. 
Therefore, we have used the patent_nr field (the number that identifies the publication of the granted 
application at the USPTO) from the 3PFL database to retrieve all the person identifiers associated to 3PFL 
patents from Patstat. This reduces the sample of patents to 37,003 as we excluded patents where the 
inventor was also the applicant, and no other applicant was reported in PATSTAT. 

 

Table A.1 shows, for each 3PFL patent the number of applicants in Patstat and the number of contractors in 
3PFL. In most cases the correspondence was 1:1 and the applicant-contractor pair directly identified.  

 

Table A.1: Correspondence between number of contractors in 3PFL and number of applicants in Patstat for clean tech 
patents. 

 
  Number of contractors in 3PFL 

    1 2 3 4 5 6 7 8 9 
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1 30,213 3,002 332 40 13 2 1 
 

1 

2 2,309 483 93 24 1 
 

1 
  

3 303 70 28 2 1 
    

4 55 13 2 1 
     

5 10 3 
       

6 
         

7 1                 

Note: the selection excluded patents where the inventor was also the applicant and no other applicant was reported. 

 

ii) In all the cases where the matching did not result in a 1:1 or 1:many correspondence we have 
disambiguated the matching using the names of applicants and contractors in the two databases.  

 

In all the cases where the number of applicants and contractors was the same (first row and first column of 
Table A.1) we associated the relative entries using the Levenshtein distance, which provided a measure of 
similarity between the names reported in the two databases. All other cases have been manually 
disambiguated. As a result, we created a correspondence table between applicant codes (person_id) in Patstat 
and the contractor identifier reported in 3PFL. 
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iii) We used the disambiguated list of person_id to retrieve all the patents granted to the same applicant over 
the 2005-2015 period. These patents represent the control group. 
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B. Robustness Checks and Specifications 
 

Misspecification of outcome and treatment models: doubly robust estimators 

 

To assess the robustness of our findings to possible issues related to misspecification of the selection into 
treatment model we rely on the augmented inverse-probability-weighted (AIPW) and the inverse-probability-
weighted regression-adjustment (IPWRA) estimators. 

 

While the IPW estimator used in the main analysis models only the treatment probability, the AIPW estimator 
model both the outcome and the treatment probability. The advantage of the AIPW is that it is enough that 
only one of the two models is correctly specified to consistently estimate the treatment effect; for this reason, 
this type of estimator is known as a property known as being. The AIPW estimator includes an augmentation 
term that corrects the estimator when the treatment model is incorrect. This augmentation term vanishes 
when the treatment is properly specified, and the sample size is large.  

 

Similarly, inverse-probability-weighted regression-adjustment (IPWRA) estimators integrate models for the 
outcome and treatment status and possess the double robustness property. IPWRA estimators utilize the 
inverse of the estimated treatment-probability weights to estimate regression coefficients that correct for 
missing data. These coefficients are then used to calculate potential outcome means (Wooldridge, 2010).  

 

To the best of our knowledge, there is no literature that compares the relative efficiency of AIPW and IPWRA 
estimators, so we report results from both approaches in the table below. Results show high and significant 
coefficients. As expected, coefficients are higher than in our favorite specification (Column 3 in Table 3 in the 
main text) as AIPW and IPWRA estimators do not allow to control for the applicant fixed effects. 

 

Table B.1: Effect of green government sponsored R&D on subsequent clean innovation – doubly robust estimators (AIPW 
and IPWRA) 

 (1) (2) 

Gvt R&D 9.074** 9.250** 

 [1.801] [1.761] 

Controls Yes Yes 

Filing year FE Yes Yes 

Technology FE Yes Yes 

Applicant FE No No 

Estimator AIPW IPWRA 

Relative ATE 0.566** 0.577** 

 [0.114] [0.111] 

N (Patents) 36,726 36,726 

+ p<0.1, * p<0.05, ** p<0.01  
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Results from the IPW treatment model and alternative weights  

 

 

Table B.2: Selection into green government sponsored R&D – propensity score. 

 (1) 

originality 0.458** 

 [0.065] 

Team size 0.015** 

 [0.006] 

# of applicants 0.014* 

 [0.006] 

CC adaptation (Y02A) 0.591** 

 [0.033] 

CCMT buildings (Y02B) -0.158** 

 [0.047] 

GHG capture (Y02C) 0.040 

 [0.057] 

CCMT ICT (Y02D) -0.763** 

 [0.051] 

GHG energy (Y02E) 0.297** 

 [0.027] 

CCMT production (Y02P) -0.007 

 [0.027] 

CCMT transport (Y02T) -0.281** 

 [0.030] 

CCMT waste (Y02W) 0.135+ 

 [0.072] 

ICT for energy (Y04S) -0.320** 

 [0.069] 

Filing year FE Yes 
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Technology FE Yes 

Chi2 test 1643.711 

McFadden's R sq 0.070 

N (Patents) 38657 

+ p<0.1, * p<0.05, ** p<0.01 
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Figure B.1: Variance ratio of residuals vs bias before and after matching 
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Figure B.2: Covariate bias before and after matching 

 

 

We test the robustness of our results to alternative weights used for regression adjustment. First, we 
implement two differently defined weights coming from the propensity score calculation. The first weight 
rebalances the treated group only: it takes value (1 − 𝑝పෝ )/𝑝̂ for the patents having received government R&D 
support and 1 otherwise (with 𝑝పෝbeing the fitted value from Table B2 above. The second weight is a standard 
inverse probability weight taking value 1/𝑝̂ for cleantech patents receiving government R&D support and 
1/(1 − 𝑝̂) otherwise. Following existing work (Hirano el al., 2003; Brunell and Di Nardo, 2004), both weights 
are computed preserving proportions between the treated and untreated group. Finally, we compute weights 
from a coarsened matching procedure (Iacus et al., 2012). Figures B.3 reports comparison between treated 
and untreated patents in relation to global and local imbalance measures. The global imbalance statistic is 
calculated as the local imbalance measures difference between the multidimensional histogram of 
pretreatment covariates in the treated group and the same in the control group. In our specific case, the value 
of 0.672 is the reference point for the unmatched data, and a decrease in the value after matching (0.597) 
indicates a reduction in the level of imbalance. Similar reductions in the local imbalance measures are found 
for the individual variables. Figure B.4 provides a comparison of variable means before and after matching 
and shows an important reduction in bias following the matching procedure. Overall, the two figures reassure 
us about the ability of the chosen approach to reduce bias from observables. 
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Figure B.3: Multivariate and local imbalance measures with and without government R&D support. 

 

 

Figure B.4: Comparison of variable means with and without Government R&D support. 

 

 

Table B.3 shows results using the set of three weights described above. We notice that implementing the CEM 
weight reduces the sample to 32,132 observations due to the need to prune observations that have no closed 
matches on covariates in both treated and control groups. Coefficients on the effect of Gvt R&D for the 
models using alternative definitions of propensity score weights show higher coefficients compared to our 
baseline estimates (see column 3 in Table 3 in the text), while the CEM weighted regression has a coefficient 
very much in line with the one reported in our favorite specification (3.78 vs 4.43). 
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Table B.3: Effect of green government sponsored R&D on subsequent innovation – alternative weights for regression 
adjustment 

 (1) (2) (3) 

Gvt R&D 5.174** 5.159** 3.784** 

 [1.226] [1.201] [1.014] 

originality 15.557** 15.786** 17.724** 

 [1.244] [1.310] [1.997] 

Team size 3.038** 3.095** 1.931** 

 [0.311] [0.319] [0.353] 

# of applicants -0.577+ -0.608+ -0.032 

 [0.311] [0.321] [0.335] 

Filing year FE Yes Yes Yes 

Technology FE Yes Yes Yes 

Applicant FE Yes Yes Yes 

Weighting scheme IPW IPW CEM 

F test 19.971 19.823 8.617 

Relative ATE 0.316** 0.313** 0.223** 

Relative ATE SE [0.076] [0.074] [0.062] 

R sq 0.416 0.411 0.434 

N (Patents) 36245 36245 31644 

+ p<0.1, * p<0.05, ** p<0.01 For the regression adjustment via propensity score, we enforce a common support by removing the 5% of 
the treatment observations at which the propensity score density of the control observations is at a minimum. 
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Alternative distributional effects of government sponsored clean technologies 

 

Figure B.5 displays the cut-off of the deciles of 5-years citations for supported and not supported patents: 
both the cut-offs and the differences between supported and not supported patents increase more than 
linearly along the distribution.  

 

Figure B.6 reports the margins (difference in probability) for government supported patents along the decile 
of the citation distribution drawn by jointly considering treated and non-treated patents. The results of the 
ordered logit regression using the same control variables of the previous regressions, but discarding applicant 
fixed effects and controlling instead for the size of the patent portfolio of a given applicant,4 confirm the 
descriptive evidence. 

 

 

Figure B.5: deciles of 5 year forward citations, sponsored and non-sponsored patents. 

 

                                           
4 We do not include applicant fixed effects in this latest estimation because of the potential issue they can bring 

with in non-linear models. 
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Figure B.6: Average marginal effect of government sponsored R&D. 
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