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Abstract 

Where does Europe stand in the global robotisation race? This paper aims to answer this 

question by developing a novel theoretical and analytical framework which applies the 

concept of a global value chain to robotisation. By doing this, we investigate in detail the 

entire robotisation chain, from robotics developers to robot manufacturers, and companies that 

deploy industrial robots. For the research and development (R&D)-intensive part of the chain 

(robotics development), we analyse the robotics patent data of the Worldwide Patent 

Statistical Database (PATSTAT) combined with ORBIS, while for the capital-intensive part 

(deployment of robots), our information is sourced from the International Federation of 

Robotics (IFR).  

Our results show that although the ‘big five’ (Europe, USA, China, Japan, and Korea) 

dominate the global robotisation landscape they do not all hold equally strong positions across 

the whole robotisation chain. Japan and Korea are the early first-movers and today’s global 

leaders, as they are robustly engaged in every part of the chain. Europe is very strong in robot 

manufacturing and robot deployment, but is behind global leaders in robotics development. 

The USA has its firm competitive advantages in robotics development, while at present the 

latecomer China is a rival only in the industrial deployment of robots. Nevertheless, in 

Europe, some smaller and advanced economies are specialising in certain parts of the 

robotisation chain, as Austria, Denmark, France, the Netherlands, and Sweden are performing 

well in robotics development; not only this, Belgium, Italy, and Spain are making extensive 

use of industrial robots for various kinds of manufacturing. European economies which are 

lagging behind the rest – largely consisting of Central and Eastern European countries – are 

involved in the robotisation chain only insofar as they are involved in robot deployment.  

Since there are only 43 countries globally who are taking part in robotisation, the eminent 

policy challenge remains to find ways for countries to become integrated into the robotisation 

chain, and for those countries already engaged in robotisation, the main focus is to create 

policies which support upgrading across the chain, as the reshoring of previously offshored 

production becomes more prevalent.  

Keywords: robotisation, global value chain, robotics patent, industrial transformation, 

territorial development, Europe 

Subject classification codes: O3, O14, O30, O25 
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Introduction: What is the robotisation race about? 

While there is still no universally accepted answer to the question of where we currently stand 

in the series of industrial revolutions, scholars are largely agreed that robotisation and 

artificial intelligence are two key features of the current industrial transformation. The various 

suggestions for naming the current period include ‘the next production revolution’ (OECD, 

2017), ‘the second machine age’ (Brynjolfsson and McAfee, 2014), and ‘globalisation’s 

second unbundling’ (Baldwin, 2016), while there is also debate as to whether we are currently 

in the third (Rifkin, 2011; Gordon, 2016), fourth (Schwab, 2016), or fifth industrial revolution 

(Perez, 2002; Bouzou, 2016). Scholars widely agree that not all innovations and technological 

improvements are equally important, and that only few of them could trigger long-lasting 

societal changes. Regardless of the types of innovation that we consider, be it basic 

innovation (Hall and Preston, 1988), general-purpose technologies (Bresnahan and 

Trajtenberg, 1995; Helpman (Ed.), 1998; Lipsey, Carlaw, and Bekhar, 2005), or key enabling 

technologies (European Commission, 2012; European Commission, 2016), all include 

robotisation, as it is one of the main drivers of the ongoing industrial revolution. This is 

particularly the case as robots are widely used across different industries and applied in 

various ways, making their economic and social consequences far-reaching. Consequently, 

the global race for robotised production is about the countries which are able to actively 

participate in the current industrial revolution, and whether their innovations in robotics could 

lead them to obtain the first-mover advantages in the principal technology of the not-so-

distant future.  

There is, however, more at stake than the technology of the future, since we have already been 

using industrial robots for at least three decades, which has profoundly shaped our economy 

and society. A growing number of studies look at the adoption of industrial robots as a 

predominantly positive development, with enormous economic benefits (OECD, 2017; 

UNCTAD, 2017; Manyika et al., 2017; IFR, 2018). According to these studies, the 

deployment of industrial robots increases productivity, and significantly contributes to 

economic growth, while the challenges of the labour market are manageable, and create the 

need for policymakers to develop appropriate policy responses (Craglia (Ed.), 2018; European 

Commission, 2018). Graetz and Michaels (2018) calculate that between 1993 and 2007, robot 

densification increased the annual growth of labour productivity by 0.36 percentage points 

across the 17 countries analysed; this magnitude is similar to steam engine technology’s 

contribution to Britain’s annual labour productivity growth during the first industrial 

revolution. The Centre for Economics and Business Research (CEBR) (2017) estimates that 

between 1993 and 2015, investment in robots contributed almost 10% of cumulative GDP per 

capita growth in the majority of the Organisation for Economic Co-operation and 

Development (OECD) countries, and the increase in robot density (number of robots per 

million hours worked) by one unit was associated with a 0.04% increase in labour 

productivity. Jungmittag and Pesole (2019) highlight that, in the 12 European countries 

analysed, the stock of robots per €1 million of non-ICT capital input significantly contributed 

to labour productivity throughout the period between 1995 and 2015, and in the transport 

equipment industry, a rise in robot stocks of 1% increased labour productivity by 0.1% on 
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average. Dauth et al. (2017) found that in Germany, where almost one tenth of the world’s 

robots are in use, every additional robot per thousand workers raised the growth rate of GDP 

per person employed by 0.5% over the period between 2004 and 2014. In addition to these 

papers with aggregate figures, recent studies at regional, industry, and firm levels (Koch, 

Manuylov, and Smolka, 2019; Ballestar et al., 2020; Kromann et al., 2020) also support 

findings that deploying industrial robots is associated with considerable gains in productivity. 

Thus, the global race for robotisation is also about which countries will benefit from such 

GDP growth and productivity increase. 

Nevertheless, these two streams—innovation in robotics on the one hand, and deployment of 

industrial robots in production on the other—are treated in both the literature and in 

policymaking as two distinct issues. The interconnectedness of the two streams, however, is 

clear: innovation in robotics with growing application possibilities pushes the deployment of 

industrial robots, and conversely, manufacturers’ demand for robots to be applied in various 

kinds of production processes pulls robotics innovation. A comprehensive theoretical and 

analytical framework of every element of robotisation, from robotics developers, to robot 

manufacturers, and companies which use industrial robots is something which is still largely 

missing in today’s literature. Therefore, the present paper aims at closing this gap by 

developing a novel theoretical and analytical framework which primarily applies the concept 

of global value chains to robotisation. The main research questions addressed in this paper are 

as follows: 1) How is the global robot landscape evolving? 2) Where does Europe stand in the 

global robotisation race?  

In our quest to answer these questions, we largely rely on the concept of the global value 

chain, though we discuss and scrutinise in detail the fundamental differences between the 

robotisation chain and global production networks (Section 2.1). We go on to outline our 

novel analytical framework of the robotisation chain (Section 2.2), and analyse the factors 

which may influence territorial concentration across the robotisation chain (Section 2.3). The 

paper then briefly discusses the main data sources, the patent and company data from 

PATSTAT and ORBIS for the R&D-intensive part of the chain, and the International 

Federation of Robotics’ (IFR) robot stock data for the capital-intensive part of the robotisation 

chain (Section 2.4). Based on the dataset, we provide a detailed analysis of the robotisation 

landscape, focusing both on the main regions of the world economy, and on countries within 

Europe (Section 2.5), and we also discuss the basic trends of the current global robotisation 

race (Section 2.6). Our concluding remarks (Section 3) offer further insights into related 

policy questions. 
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The conceptual framework of the robotisation chain, and its application to the 

global robotisation race 

Robotisation chain versus global production network 

Undoubtedly one of the greatest innovations of globalisation was the development of supply 

chains and value creation networks which span several countries and facilities. Baldwin 

(2016: 242) notes that this development triggered a genuine ‘global value chain revolution’. 

During the 1990s, as the most recent wave of globalisation was in its beginning stages, the 

terms for such networks proliferated: ‘value chains’ (Porter, 1985), ‘global production 

networks’ (Dicken, 1998), or ‘global commodity chains’ (Gereffi and Korzeniewicz, 

1994).Today, the expression ‘global value chain’ has become commonplace, (Rhodes, 

Warren, and Carter (Eds.), 2005; Gereffi, 2018; Ponte, Gereffi, and Raj-Reichert (Eds.), 2019) 

not least because it suggests that within a production network consisting of several 

companies, facilities, and countries, new value is added to the product at each stage —from 

design and purchasing through to parts manufacturing and assembly, and to sales and 

servicing—. Nowadays, ever-growing shares of products are assembled from components 

produced in different facilities and countries across the world (OECD, 2016; World Bank 

2017a; WTO 2019), so much so that designations starting with ‘Made in…’ have become less 

and less meaningful. Within the chain, it is now not the place of assembly which is the main 

feature, but the location and quality of the value added. Meanwhile, labour, capital, and 

technology, being the key factors of production, are not distributed evenly across the various 

facilities and countries which make up the chain.  

At first sight then, it seems obvious that the robotisation chain, revolving around a marketable 

product incorporating many intermediary components, might be analysed as a value chain. 

Robots are, however, also part of a broader process of industrial automation, and hence the 

robotisation chain is more than a new or unique global value chain. Thus, it is not our 

intention to describe the specific production network of robots, as a typical global production 

network analysis would do, but to apply the theoretical insights from research into global 

value chains to the robotisation chain.  

We draw a clear distinction between the robotisation chain and the global value chain, 

because they differ from each other in at least four essential ways, namely their scope, 

intangible contents, maturity, and competition rules.  

Firstly, robots are developed and produced for the market, but the end-users who purchase 

them are at the same time manufacturing companies themselves, and they put the robots to 

work in various automated production processes, while in traditional and consumer goods-

oriented global value chains, the end-users are generally the final consumers. Therefore, the 

scope of the robotisation chain is much broader than that of global value chains, as the end-

users trigger a new cycle in the robotisation process, creating economic and social 

consequences that are fiercely debated both in public and scientific discussions.  

The issue which attracts the most attention is undoubtedly the impact that robots might have 

on employment. According to the most pessimistic assessments of the ‘robocalypse’, almost 
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one in two jobs will be replaced by robots for two decades to come (Frey and Osborne, 2013; 

Acemoglu and Restrepo, 2017; Chiacchio, Petropoulos, and Pichler, 2018; Lordan, 2018; 

Frey, 2019). More moderate assessments predict that one in eight jobs will disappear, and one 

third of all jobs will be significantly transformed (Arntz, Gregory, and Ziehran, 2016; 

Nedelkoska and Quintini, 2018), increasing the need for skills adjustments (Goos et al., 

2019). Finally, the most detailed analyses of the past twenty years show a small but 

significantly positive effect of robotisation on total employment (Dauth et al., 2017; Klenert, 

Fernández-Macías, and Antón, 2020). In sum, these predictions and assessments are 

characterised by a high degree of uncertainty, and a number of theoretical and methodological 

drawbacks such as taking at face value what is technologically possible, focusing exclusively 

on the quantitative side of the implications for employment, and neglecting country-specific 

and industry-related factors (Cséfalvay, 2019a). By contrast, studies analysing productivity 

issues unanimously state that the deployment of robots has been accompanied by significant 

gains in productivity over the past two decades. 

Yet, both studies on the potential impact robots have on employment, as well as analyses of 

past productivity growth caused by robots, have one point in common: they focus almost 

exclusively on the deployment of industrial robots, and pay much less attention, if any, to the 

route prior to robot installation, namely, robotics development, and robot manufacturing. It is, 

however, evident that these factors are the ones which, from the side of technology, push 

forward the deployment of robots. Cutting-edge robotics novelties offer an ever-expanding 

wide range of industrial application possibilities, while improvements in robot manufacturing 

could push down the price of robots. In other words, we simply cannot talk about robotisation 

without analysing robotics development and robot manufacturing, which are prerequisites for 

the deployment of robots; vice versa, we cannot talk only about the value chain of robots 

without analysing the possible economic and social impacts of deploying robots at the end of 

the chain. 

Secondly, while in the past decade, new digital technologies have enormously transformed  

global value chains, value creation is now rapidly shifting towards digital contents and 

intangible assets (De Backer and Flaig, 2017; Haskel and Westlake, 2017; De Backer et al., 

2018), and this phenomenon is particularly prevalent in the robotisation chain. Robots are 

‘intelligent machines’, and their development, production, and deployment is inconceivable 

without extremely complex IT systems with sophisticated software, algorithms, applications, 

and big datasets. Moreover, the high number of digital contents and intangible assets across 

the robotisation chain, particularly in the development and design of industrial robots, means 

that opportunities for quick and global scaling are bigger in the robotisation chain than in 

traditional, consumer goods-oriented global value chains.  

Thirdly, the majority of global value chains are developed for mature industries and products 

in the ‘maturity stage’ of their life cycle; in the robotisation chain, however, the products, i.e. 

industrial robots, are currently in the ‘initial’ or ‘growth’ stage. During the heydays of 

globalisation, value chains have gone global, moving especially towards developing countries 

with enormous labour reserves and exceedingly low wages, and offshoring often occurred at 

the point of the product reaching the ‘maturity’ or ‘saturation’ stage of its life cycle—a 
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phenomenon described and theorised by Vernon (1966) more than half a century ago. 

Looking back over the past three decades, it seems that globalisation and offshoring of 

manufacturing from developed to developing countries were merely the necessary stepping-

stones for large enterprises, enabling them to produce large quantities on a market which was 

becoming global. By contrast, robots are currently in the early stages of the product life cycle, 

and this enormously influences the robotisation chain’s geographic pattern by paving the way 

for strong territorial concentration on the one hand, and weakening opportunities for regional 

convergences on the other.  

— Finally, traditional global value chains and the robotisation chain are fundamentally 

different when it comes to governance issues, and the task is to assess the competitive 

positions of different countries. In global value chains, the most important governance 

question is about which countries and companies possess those key positions which allow 

them to control the whole chain (Gereffi and Korzeniewicz, 1994; Henderson et al., 2002; 

Gereffi, 2018). Although the outcome varies greatly according to the product in question, 

within traditional global value chains, the centre of power and profit is placed with the 

company who contributes the capital, the technology, or the market to the chain (Gereffi, 

Humphrey, and Sturgeon, 2005; Gereffi and Fernandez-Stark, 2016). By contrast, in the 

robotisation chain, the fundamental question is not about who has the most powerful control 

position in the chain, but who is able to concentrate all three of the most important elements 

of the chain: robotics development, robot manufacturing, and industrial robot deployment. 

Economic benefit and technological leadership are derived not from holding a single position, 

no matter how much control one could exercise from that point, but from active participation 

in each decisive part of the robotisation chain. Therefore, in the robotisation chain, the rule of 

competition differs from traditional global value chains, as countries which are strong at every 

point of the robotisation chain are the leaders and have the first-mover advantages, while 

those who are only integrated in some particular parts of the chain are lagging behind, and 

have the enormous challenge of upgrading across the chain and catching up with their 

competitors. 

In short, the robotisation chain is larger and broader than a traditional global value chain 

which is developed for a particular product. Similarly, the robotisation chain is fundamentally 

different from traditional global production networks in many important respects, such as the 

scope, the intangible contents, the maturity of the product, and the competition rules. 

Nevertheless, the concept of the global value chain as an analytical approach could be 

beneficial for understanding and capturing the main features of the robotisation chain. 

The analytical framework of the robotisation chain 

Our analytical framework for the robotisation chain has been inspired by two main sources: 

the long-established literature on global value chains, and recent studies which explicitly 

analyse some particular part of the robotisation chain. For instance, Leigh and Kraft (2018) 

make a clear distinction between the ‘suppliers’, e.g. companies that design, produce, and sell 

industrial robots, and the ‘robot-using manufacturers’ (RUMs), e.g. companies which 

purchase, install, and deploy robots across various areas of manufacturing. Robot using 

manufacturers could purchase robots directly from suppliers that manufacture robots, or from 
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specialised intermediaries, ‘integrator’ companies which provide specific expertise to install 

and customise robots, but large robot using manufacturers usually have their own in-house 

robotics integration capabilities or robotics development facilities. Forge and Blackman 

(2010) highlight that intermediary robotics companies, such as ‘system integrator specialists’ 

or suppliers of special components, are becoming important players, filling the space between 

robot manufacturers who supply branded products to the market, and companies that install 

and deploy robots. 

By combining this initial taxonomy with the concept of global production networks, the 

robotisation chain might be divided in three main parts, which together form the skeleton of 

our model (see Fig. 1): 

 Robotics developers (RDs), who carry out cutting-edge research in this field, and 

develop new robotics technologies. These are big companies and small start-ups, 

university departments and research institutes, and it is evidently the case that 

enterprises which manufacture robots have their own extensive research facilities for 

robotics technologies.  

 Robot manufacturers (RMs), companies for whom  the design and production of 

robots is their main activity field, and who supply the market with robots on a large 

scale. 

 Robot user manufacturers (RUMs),companies which purchase, install, and then 

deploy industrial robots to various kinds of production processes in order to supply 

consumers with products that come from automated production.  

Figure 1. Model of the robotisation chain 
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Because of the highly complex and customised nature of robotics systems, there are also 

many mixed forms of companies and institutions within the robotisation chain: 

 Large-scale robot manufacturers do not only produce robots for the market, but also 

carry out significant research in robotics, as RDs often have the ability to produce 

robots, albeit on a smaller scale or for purposes of experimentation.  

 Most large RUMs, particularly in the automotive and electronics industries, have their 

own In-house Robotics Development (IRD) facilities, primarily for customising robots 

supplied by RMs to their specific production processes, or because of their particular 

requirements that emerge during automation.  

 Finally, there are Intermediary companies and institutions (ICIs) which provide RUMs 

with vital expertise for installing and implementing robots to suit their specific needs. 

At present in the literature, there are a growing number of studies which focus on a specific 

part of the robotisation chain, and pay particular attention to the global concentration of that 

part. For instance, in researching RDs, Keisner, Raffo and Wunsch-Vincent (2016) found that 

in 2015, four out of five companies and institutions in this field were home to only ten 

countries(Japan, USA, China, Korea, Canada, Germany, Italy, France, United Kingdom, and 

Switzerland). Unsurprisingly, between 1960 and 2011, applicants from these countries filed 

the vast majority of robotics-related patents, although in Europe, Denmark, Finland, the 

Netherlands, Sweden, and Spain also had a high number of innovative robotics firms filing for 

patents, relative to each country’s GDP. 

As for RMs, Leigh and Kraft (2018) note that the 28 robot-supplier companies which provide 

data for the IFR are headquartered in just 12 countries. Moreover, only four countries 

worldwide are home to three or more RMs; Denmark and Switzerland each have three, while 

Germany and Japan each have six companies. Forge and Blackman (2010) also highlight that 

in Europe, the major companies which specialise in developing and manufacturing industrial 

robots were located in only eight countries (Germany, Switzerland, Sweden, Italy, France, 

United Kingdom, the Netherlands, and Austria).  

In respect to ICIs, Leigh and Kraft (2018) show that in the USA, they are always located in 

close proximity to RUMs. While ‘supplier-dense regions’ are placed in long-established high-

tech clusters (e.g. Silicon Valley, Boston), with RDs specialising in research, design, and 

robot development , ‘integrator-dense regions’ where ICIs focus on implementing and 

customising robotics systems, are clustering in traditional industrial districts (e.g. the 

manufacturing belt around the Great Lakes).  

Finally, RUMs are also strongly concentrated, and as Cséfalvay (2019b) highlights, around 

1,600,000 industrial robots were deployed globally in 2015, but the overwhelming majority 

were at work in only five countries: Japan (18%), China (16%), USA (15%), Korea (13%), 

and Germany (11%). Adding all other EU member states with Germany’s figure, Europe was 

heading with more than 400,000 robots (26%), and the combined share of the top five 
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economies including Europe was 88% of the global robot stock, indicating an extremely wide 

gap between the few leaders and the Other Robotised Countries. Fernández-Macías, Klenert, 

and Antón (2020) also take note of this trend, as in Europe, robot deployment is largely 

specialised in few industries (car manufacturing, and the production of plastic and metal 

products), and in 2016, around 50% of European robot stock was put to work in a single 

country (Germany).  

Thus, according to recent literature, strong territorial concentration seems to be the prevailing 

trend in each part of the robotisation chain, and only a handful of countries dominate the 

robotisation landscape. These studies, however, do not cover the entire robotisation chain, and 

do not deal with the interplay of different parts of the chain. Taking into account the 

complexity and dynamics of the robotisation chain, this trend is neither necessarily relevant to 

the same extent in every part of the chain, nor permanent in the long term.  

Factors influencing concentration across the robotisation chain 

Regarding the overall tendency for industrial-territorial concentration across the robotisation 

chain the literature offers two conflicting approaches. The first focuses on the territorial gap in 

robotisation, and as López Peláez (2014) highlights, this ‘robotics divide’ includes economic, 

social, political, and even military aspects. As with the digital divide, there are deep issues 

between those states, companies, and individuals who have access to advanced robotics 

technology, and therefore to the benefits robotisation may offer, and those who do not have 

access and miss these opportunities. Bughin et. al (2018) also argue that today, an ‘AI divide’ 

is emerging as Artificial Intelligence (AI) technologies (including robot-based automation) 

become more and more prevalent, and they estimate that AI leaders (primarily developed 

countries) could benefit from an additional 25% upside in GDP by 2030, while the followers 

(mostly emerging economies) may capture only half of this upside. The reasons for the AI 

divide are very diverse, ranging from the overall trend of increasing capital share in digital 

and highly automated industries since the 2000s (Aghion, B. Jones, and C. Jones, 2017), to 

the delicate interplay between innovation, and regulation which favours first-movers and 

deters followers (Aghion, Antonin, and Brunel, 2019), as well as unique factors such as the 

‘rise of superstar firms’ (Autor et al., 2020), which could play an important role. 

On the other hand, scholars of the second approach look at the geographic pattern in the 

context of interdependencies across the robotisation chain. As Ross (2016: 40) recognises, 

‘the countries that are best positioned are those that are developing and manufacturing 

robotics for export, that house the headquarters, the engineers, and the manufacturing 

facilities.’ Those countries that only host RUMs without having robotics development and 

robot manufacturing facilities themselves possess the weakest positions across the 

robotisation chain.  

In a similar manner, the United Nations Industrial Development Organisation (UNIDO) 

(2019) classifies countries in respect to their position in the development and deployment of 

advanced digital production (ADP) technologies (a category which includes robots). Based on 

patenting activities and trade relations in this field, UNIDO recognises the frontrunners who 
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are leaders in all parts of the chain, in developing, producing, exporting, and deploying ADP 

technologies, although this group includes only ten countries globally. Follower economies 

are engaged in ADP technologies to a lesser extent, and the subcategory of ‘followers in 

production’ (23 countries) are countries which develop, produce, and export ADP 

technologies, while the ‘followers in use’ (17 countries) are economies which only import and 

deploy these technologies to various manufacturing industries. The latecomers’ group (28 

countries) is also divided into producers and users, but in this case, engagement with ADP 

technologies is below the global average. All other countries in the world are not involved in 

the robotisation process.  

Whether it is about the robotics/AI divide or interdependencies across the robotisation chain, 

these studies do not sufficiently explain why there is a strong tendency towards concentration. 

Although, having a certain amount of geographical understanding can help us to account for 

the fact that when new industries and technologies arise, there is initially a very strong 

territorial concentration, which only later will start to diffuse, with a considerable time lag, 

and regional convergence will begin. Furthermore, returning to the literature on global value 

chains, it is also widely understood that the relative importance of particular production and 

location factors varies significantly across production networks, and this enormously 

influences the geographic pattern of the chain (Kaplinsky, 2000; Kaplinsky and Morris, 2001; 

Humphrey and Schmitz, 2002; Henderson et al. 2002; Rhodes, Warren and Carter (Eds.), 

2005; Gereffi and Fernandez-Stark, 2016). Drawn from these insights, we developed a matrix 

showing how different areas of the robotisation chain have varying needs regarding the most 

important production and location factors, such as R&D and capital intensity, skills held by 

the workforce, external services, and internal management (see Tab. 1). 

Table 1. Relative importance of production and location factors across the robotisation chain. 

 

 

It is easy to concede that while R&D is the dominant feature across the entire robotisation 

chain, its relative importance radically decreases from RDs to RMs, and finally to RUMs. 

Similarly, the availability of highly qualified and scientific workforces is vital for RDs and to 
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a lesser extent for RMs, while RUMs primarily need access to middle-skilled workers who are 

capable of working with robots. In contrast, capital intensity shows a reverse direction, in that 

it is the highest for RUMs and the lowest for RDs, although for the latter, the risk of 

investment could also be significantly high. From an economic point of view, it should be 

noted that in most cases, the deployment of robots by RUMs is coupled with a broader system 

of production (e.g. assembly lines, hardware and software support, equipment, and data 

management). Hence, the purchase and instalment of robots is only a smaller fraction of the 

total capital-intensive investment in a newly established automated production system 

(OECD, 2019). 

Based on this matrix of different location factors in the specific areas of the robotisation 

chain, some preliminary assumptions can be stated for territorial concentration. Firstly, 

because of the specific knowledge and expertise required, RDs might concentrate in countries 

and regions with high availability of scientific resources and workforces, universities and 

research institutes, and specialised suppliers and manufacturers. Moreover, there is evidence 

from agglomeration economies that when innovative regional clusters reach a certain scale 

and critical mass, they could become self-sustaining and self-reinforcing systems (Fujita and 

Mori, 2005; Glaeser, 2010; Fujita and Thisse, 2013), as was the case with information 

technologies (Saxenian, 1996; Castells, 2000). Thus, it is safe to say that in the case of RDs, 

the countries and regions that today possess the first-mover advantages could, over time, 

become robotics agglomerations with dominant positions.  

Secondly, for RMs, it might be domain knowledge and expertise in advanced manufacturing, 

as well as market size, which could both drive and explain territorial concentration. Since, at 

the current technological level of robotics, companies in automotive and electronics industries 

deploy the majority of global robot stock, countries’ specialisation in these industries might 

also offer a good basis and market scale for establishing RM companies.  

Finally, the territorial pattern of RUMs is influenced by a number of economic factors, such 

as labour costs, the shrinking availability of the labour force in manufacturing, economic and 

employment structures, industrial dynamics and sectoral specialisation, and the countries’ 

developmental stage and position in international division of labour. In this respect, there is a 

striking contrast between the current deployment of industrial robots and the ever-growing 

literature on the future of work. The latter in essence applies a comparison between the skills 

demands of the current jobs held by humans, and the (future) skills of robots, based on what is 

technologically possible today or what will be possible in the future. By doing this, studies 

predict and assess workers’ risks of being displaced by automation (Frey and Osborne, 2013; 

Chui, Manyika, and Miremadi, 2015; Arntz, Gregory, and Ziehran, 2016; Nedelkoska and 

Quintini, 2018; Lordan, 2018; Frey, 2019), and calculate for instance that in the USA, each 

robot installed replaces six people (Acemoglu and Restrepo, 2017), while in Europe, each 

robot installed replaces three or four workers (Chiacchio, Petropoulos, and Pichler, 2018). At 

present, however, robots are overwhelmingly deployed in industries with middle or higher 

skills requirements (UNCTAD, 2017; OECD, 2019), and their penetration is exceedingly 

limited in those manufacturing activities where the majority of employees are classed as low-

skilled workers, and the tasks carried out are easily replaceable by robots at current level of 
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technology. Moreover, a recent study shows that in Europe, the adaption of industrial robots 

from 1995 to 2015 was linked to a small but significantly positive employment effect, as one 

additional robot per 1,000 workers was correlated with an increase in total employment of 

1.3% (Klenert, Fernández-Macías, and Antón, 2020). 

In real business life, for RUMS, the benefit of deploying industrial robots rather than 

employing human workforces lies primarily in different expenditure patterns, and to some 

extent, in the skills-biased opportunity of using robots instead of humans, as studies on the 

future of work suggest. Production processes with human labour are coupled with low capital 

expenditure (CAPEX) (e.g. for the recruitment of a labour force or for training) but very high 

operational expenditure (OPEX) (e.g. for labour costs), while in the case of automated 

production, the upfront investment in purchasing robots (CAPEX) is relatively high, and the 

OPEX is very low. As such, companies’ choice between deploying robots and employing a 

human labour force is a trade-off in terms of different expenditure structures which may vary 

widely across industries and countries. Moreover, this trade-off could change over time, since 

in the past three decades, the performance and competence of industrial robots has steadily 

increased, while their price has continuously decreased. Chiacchio, Petropoulos, and Pichler 

(2018), CEBR (2017), and Melrose and Tilley (2017) all calculate that today, in countries 

with the highest robot penetration rates, robots have become around three times more efficient 

than those that were introduced in the 1990s, though their prices have halved in real terms; 

parallel to this, the cost of labour has almost doubled. 

Similarly, recent studies indicate that in the context of falling robot prices and increasing 

wages, industrial robots are progressively deployed in industries and countries where wages 

are high relative to the price of robots, which means that these industries and countries benefit 

from a quick return of capital-intensive investments in robot-based automation. High labour 

costs might work as a strong incentive for companies deploying industrial robots; however, 

Atkinson (2018) shows that the intensity of robot deployment in the majority of European 

countries is lower than expected with respect to their high wages. Cséfalvay (2019b) also 

underlines the close link between high labour costs and intensive robot deployment, and 

argues that this link not only reflects, but also strengthens the already existing economic and 

geographic disparities across Europe. Using multivariate and econometric analysis, 

Fernández-Macías, Klenert, and Antón (2020) found that from 1995 to 2015,  Europe’s robot 

density grew more in industries and countries with higher wages than in sectors with higher 

routine and manual task content, and in economies with a higher risk of offshoring industrial 

production.  

Because the specific production and location requirements that emerge at different parts of the 

robotisation chain are not ubiquitous or easy to reproduce, countries with these production 

factors could concentrate large shares across the robotisation chain. Though, while these 

factors might have some explanatory relevance, when looking at particular countries, further 

research might clarify the causality of the link between specific location requests and the 

countries’ position in the robotisation chain. 
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Data and methodology 

In order to capture the R&D-intensive parts of the robotisation chain (RDs, RMs, and IRDs), 

this study retrieved and analysed patent data from the PATSTAT 2019 spring edition, as 

maintained by the European Patent Office (EPO). It is definitely the case that the usefulness 

of patents as a measure of innovation at national, regional, and firm levels could vary greatly 

across industries (Fontana et al., 2013), and that there are extensive limitations to patent 

analyses (Archibugi, 1992), since not all innovations are patented, and not all patents lead to 

new products. Nevertheless, patents have a long and widespread history of being used to 

account for technological innovation which has been developed for commercial purposes, and 

the literature treats it as a ‘tolerable assumption’ that they measure commercially useful 

innovation (Griliches, 1990). 

One main advantage of using patents to analyse technological developments relates to the 

International Patent Classification scheme (IPC), which is a hierarchical classification system 

used primarily to classify and search for patent documents including utility models
1
 according 

to the technical fields. Cooperative Patent Classification (CPC) is an extension of the IPC, and 

jointly managed by the EPO and the US Patent and Trademark Office (USPTO). In this study, 

we focus on patent families pertaining specifically to robotics, following the methodology 

developed by the UK International Patent Office (UKIPO) (2014), and replicated by the 

World Intellectual Property Organisation (WIPO) (2015). More specifically, PATSTAT was 

queried for patent documents with IPC/CPC classes pertaining to robots, and the term ‘robots’ 

or ‘robotics’ in the title and the abstract of the document. Given that, documents from all 

intellectual property offices were retrieved, and in order to avoid double counting, the unit of 

our analysis was the extended patent family (International Patent Documentation 

(INPADOC)). The patent families in this analysis were fractionally counted according to their 

year of first filing worldwide, commonly known as the priority year, which is closest to the 

date of invention. Patent assignee data from PATSTAT were matched with data from ORBIS 

at the level of individual companies (including subsidiaries where available), using a series of 

probabilistic string-matching algorithms. ORBIS is a proprietary database maintained by 

Bureau van Dijk
2
, which contains information on more than 365 million companies. 

For the capital-intensive part of the robotisation chain (RUMs), the primary source of 

information came from the IFR. The IFR provides consolidated measures of industrial robot 

stock by country, year, and industry, based on the annual sales data of major RMs (IFR 2019). 

In addition, it calculates robot densities, measured as the number of industrial robots per 

10,000 persons employed in respective industries, by using OECD’s Structural Analysis 

Database (STAN) and International Labour Organisation Department of Statistics (ILOSTAT) 

data for employment.  

In the detailed analysis of this report, we do not deal with individual companies and 

institutions, but with groups of entities who are active in some specific parts of the 

robotisation chain, and we analyse these groups by country breakdown. Nevertheless, the 

                                                           
1 Utility models are very similar to patents but have less stringent patentability requirements. 
2 A Moody’s analytics company. 
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identification of the different parts of the robotisation chain, as it is shown in the theoretical 

model (see again Fig. 1) is limited at least by two main factors. Firstly, because robotics 

development and robot manufacturing are relatively new and very dynamic industrial 

activities, the industry classification of certain companies does not always follow the rapid 

changes in companies’ profiles, and hence there are companies which are statistically 

classified to sectors other than robotics, although according to robotics patent figures, they are 

also active in robotics development. Secondly, in some highly robotised Asian countries, the 

economy is dominated by large industrial conglomerates (e.g. the chaebols in Korea, and the 

keiretsu system in Japan) which are at the same time working in a number of interlocking 

businesses and industries, and some of them are also active in robotics technologies and robot 

production. Bearing these limits in mind, and by using these datasets, for analytical purposes 

we classify the main parts of the robotisation chain as follows: 

 We identify RMS as companies that are working according to ORBIS in robot 

manufacturing (NACE 28.22, 28.99). Because the robotisation chain contains a very 

high share of intangible assets, and due to robot manufacturing being in its early years, 

our analysis used the PATSTAT data, focusing only on the patent filing activity of this 

group of companies, in order to build a picture about its size and scope. 

 Based on PATSTAT and ORBIS data, the IRD facilities of RUMs were identified by 

looking at robotics patents filed by automotive or electronics companies, since these 

are those two sectors where the overwhelming majority of global robot stock is 

currently deployed.  

 Using the PATSTAT data, the group of RDs were treated as entities which filed 

significant numbers of patent families in robotics, the only exception being those 

entities which, according to ORBIS, are also classified as RMs or as automotive or 

electronics manufacturers (IRDs).  

 For the classification of RUMs, we used the IFR data, particularly focusing on the 

operational stock of industrial robots, and robot density. 

 Since the ICIs which help RUMs to customise robots to their specific needs generally 

do not have significant patent filing activity in robotics, we omitted this element of the 

robotisation chain from the analysis. 

With regards to territorial scope, the present report applied a threshold that the manufacturing 

robot stock in a given country must have exceeded 1,000 robots in 2016, and as a sign of the 

strong territorial concentration worldwide, only 43 countries met this criterion. Using this 

threshold, 17 EU member states—Austria, Belgium, Czechia, Denmark, Finland, France, 

Germany, Hungary, Italy, the Netherlands, Poland, Portugal, Romania, Sweden, Slovakia, 

Slovenia, and Spain—have been analysed, and henceforward, the notion of Europe refers to 

these countries. Central and Eastern Europe comprises Czechia, Hungary, Poland, Romania, 

Slovakia, and Slovenia, while the category of Non-EU Europe includes those European 

countries that are not European Union member states, such as Norway, the United Kingdom, 

and Switzerland. For global comparisons, the analysis has been expanded to the USA, China, 
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Japan, and Korea, as well as to South-East Asian countries (Honk Kong, Indonesia, Malaysia, 

Philippines, Singapore, Thailand, Taiwan, and Vietnam) and the group designated as the 

Other Robotised Countries (Australia, Argentina, Brazil, Canada, India, Israel, Mexico, New-

Zealand, Russia, South Africa, and Turkey).  

The data available do pose clear limits to the scale and scope of our analysis, as well as to the 

interpretation of the research results. Nevertheless, even with these limitations, our analysis 

could still be relevant to geographic differences, and hence might be informative for capturing 

the territorial pattern of the entire robotisation chain. 

The global landscape of robotisation 

Both robotics development and robot deployment belong to the most fast-growing global 

markets. Between 1995 and 2016, the number of robot-related patent families worldwide 

increased exponentially; it almost doubled every five years over this period, and while in 1995 

only 35 patents families were filed, this figure jumped up to more than 1,100 by 2016. In 

total, 6,210 robotics patent families were filed between 1995 and 2016 in the 43 countries 

analysed, and their global distribution straightforwardly corresponds to the strong territorial 

concentration that we expected, as the ‘big five’ countries (Europe, USA, China, Japan, and 

Korea) possess the overwhelming majority of global patent stock (see Fig. 2).  

Figure 2. Development of robot-related patent stock by macro regions of the world, 1995-2016 

(number of patent families) 

 

Source: authors’ calculation based on data from PATSTAT and ORBIS 

The first movers in robotics are Japan and Korea, and these countries together now own 

almost half of the robots-related patents worldwide. Overall, the USA and Europe followed 

the growth trend of the global leaders, and while the USA surpassed Europe in the last couple 

of years, the number of patents in both the USA and Europe were considerably lower than in 

Japan and Korea throughout the period analysed. In Europe, however, robotics development is 
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limited to a small fraction of countries, and almost 60% of the patents filed were in Germany 

(576 patens). Germany, together with France (133 patents) and Sweden (121 patents), 

concentrate more than 80% of Europe’s total robotics patent stock, and  when we consider 

Austria, Denmark, Italy, and the Netherlands alongside the aforementioned countries, this 

figure becomes over 90%. The non-EU member European countries—Switzerland with 

almost 200 patents, and the UK with 58 patents—are also performing well. By contrast, 

China, with an almost insignificant number of robotics-related patents up until 2010, seems to 

be a latecomer, and their  rapid catching-up process only began in the past couple of years. 

South-East Asia is clearly lagging behind, and robotics development is represented by almost 

a single country, as the region possesses less than 120 patents, but more than 100 of those 

were filed in Taiwan. Countries from the Other Robotised Countries filed less than 150 

robotics patents, with Canada (57 families) and Israel (44 families) being responsible for the 

vast majority of these. 

Similarly, the number of industrial robots increased exponentially between 1995 and 2018, 

from 600,000 robots deployed worldwide in 1995 in the 43 countries analysed, up to 

1,600,000 in 2015, and to 2,350,000 in 2018. Beyond this expressive global rise of industrial 

robots there has been, however, a significant reshuffling process in the ‘big five’ (see Fig. 3).  

Figure 3. Development of industrial robot stock by macro regions of the world, 1995-2018 (number of 

industrial robots installed) 

 

Source: authors’ calculation based on data from IFR (2019) 

Firstly, in Europe, the USA, and Korea the steady growth of robot stock was coupled with a 

relatively persistent global share over the period from 1995 to 2018, and now one in five 

robots are deployed in Europe, and around one in eight in Korea and in the USA. Secondly, in 

Japan, who were early frontrunners in robotisation , and who concentrated around two thirds 

of the global robot stock in 1995, the number of robots has drastically decreased over the past 

two decades. Only in recent years has this number started to rise again, meaning that today, 

Japan’s global share has plummeted to the level of the USA and Korea. Finally, the most 
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stunning development is in China, where until 2010, industrial robots were almost non-

existent, but since then the number of industrial robots has skyrocketed by a factor of 12, and 

now China has become the global leader in robot deployment, with 650,000 robots installed – 

a global share of 28%. 

Looking at the R&D-intensive parts of the robotisation chain in more detail, the majority of 

robotics-related patents (61%) have been filed by RDs, followed by IRDs with 32%, while 

RMs own only 7% of the patent families globally. The leading role of the ‘big five’ countries 

also remains incontestable in this perspective, although their position varies greatly at 

different parts of the chain, both in respect of global share and density (see Tab. 2).  

Table 2. Global distribution of the main activities across the robotisation chain, and their densities 

(robotics patents per 100,000 employees in manufacturing (2016), industrial robot stock per 10,000 

employees in manufacturing (2018)). 

 

Source: authors’ calculation based on data from PATSTAT, ORBIS, and EUROSTAT for robotics patent stock and density, 

and from IFR (2019) for robot stock and density. 

For instance, while China currently deploys more than one quarter of the global robot stock, 

their portion of patents filed by RMs and IRDs is extremely low, and their share in the patents 

of RDs is the lowest among the ‘big five’. In contrast, Japan and Korea are the global leaders 

for IRD, and these countries together concentrate around two thirds of all patents of this kind, 

a phenomenon which can be traced back, at least partially, to their industrial conglomerate 

structure. In addition, Japan and Korea concentrate considerable shares of the patents filed by 

RDs, and their RUMs also deploy a high number of robots in different industries.  
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Undoubtedly the biggest strength of the USA is in the high number of patents filed by RDs, 

but it is also the case that companies within the USA which deploy industrial robots have 

significant robotics patent filing activity. Finally, while RMs own only a small fraction of the 

global robotics patents stock (7%), Europe concentrates more than half of these patents. 

Among the patent assignees, there are many European and Japanese companies which are 

present in Europe via overseas subsidiaries
3
. In addition, Europe is also well positioned in 

robot deployment. 

High global shares in some parts of the robotisation chain, however, have not gone hand in 

hand with high densities (measured as robotics patents per 100,000, and industrial robots per 

10,000 employees in manufacturing). Although, density values show in a more precise 

manner how deeply robotisation transforms the economy in question, as when calculating 

density, the economy’s size and the particular role of manufacturing in the economy must 

both be taken into account.  

Firstly, while it is the most striking development that in recent years, the number of industrial 

robots in China has skyrocketed up to 650,000 robots, the Chinese robot density remained 

relatively low compared to its peers, and the densities regarding patent filing activities are at 

the lowest in China. Secondly, the USA concentrates more than one fifth of all RDs’ patents 

globally, though their density rate is lagging behind. Thirdly, and in contrast to this, Japan and 

Korea have not only high global shares, but also high densities of RD and IRD patents, and 

these countries have very intense robot deployment too. Finally, Europe, and particularly 

Germany, has a very high share and high density in the patent filing of RMs, as well as in the 

deployment of industrial robots. 

Moreover, despite the strong concentration of every part of the robotisation chain in the ‘big 

five’, some smaller economies are performing and converging surprisingly well. Regarding 

robotics patents, in Europe, densities in Sweden and Denmark are well above the global 

average, while Austria, France, and the Netherlands have just below global average densities 

(see Fig. 4). Within the Non-EU Europe category, Switzerland excels with the world’s second 

highest robotics patent density, within the group of other robotised countries Israel shows also 

globally very strong position in robotics development, and within the South-East Asia group, 

Taiwan has a good performance rate, while from the Other Robotised Countries group, 

Israel’s patent density is well above the global average. 

Figure 4. Robotics patent stock and patent density, selected countries worldwide (global 

average=0.525 patents per 100,000 employees in manufacturing, Pearson’s r=0.5452). 

                                                           
3 Companies usually own other smaller companies (subsidiaries), which may be located abroad. Mother companies and their affiliates are 

organised in a tree-like corporate structure. This information is available, but was not used in the present geographic analysis, because 

the industrial classification is not necessarily common between the subsidiaries and the mother companies (mother companies not 

classified as RMs). 
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Source: authors’ calculation based on data from PATSTAT and ORBIS for patent stock, and EUROSTAT for employment. 

In respect to robot deployment, in most of the smaller European economies, rising robot 

stocks were associated with rising density figures and now,  a sign of convergence is that 

robot densities are clearly above the global average (see Fig. 5). South-East Asia is lagging 

far behind both the average number of robots installed and robot density; however, Singapore 

currently has the world’s highest robot density with 831 robots per 10,000 manufacturing 

employees, and Taiwan is yet again seen to fare well in global comparison. Finally, in the  

Non-EU Europe group, Switzerland’s robot density is above the global average, and within 

the Other Robotised Countries group, this is also the case for Canada.  

Figure 5. Industrial robot stock and robot density in manufacturing, selected countries worldwide, 

2018 (global average=99 robots per 10,000 employees in manufacturing, Pearson’s r=0.3458). 
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Source: authors’ chart based on data from IFR (2019). 

Main trends of the current global robotisation race  

Based on the detailed analysis of the robotisation chain, the following four major trends of the 

current global race can be observed:  

 Firstly, large and advanced economies, the ‘big five’ countries, dominate the global 

robotisation landscape with an extremely strong concentration across the entire 

robotisation chain.  

 Secondly, within the ‘big five’, the particular economies differ significantly with 

regard to the scale and scope of their engagement in robotisation, and very few of 

them have equally strong positions at every point of the robotisation chain. 

 The third trend shows that smaller and advanced economies are engaged in 

robotisation to a lesser extent, but are successfully specialising in some specific part of 

the robotisation chain. 

 Finally, despite the strong concentration in the ‘big five’, it is possible for latecomers 

to join the robotisation chain and work their way up it, although at present, their 

convergence process is limited to industrial robot deployment. 

With regards to the first trend, the current territorial pattern of the robotisation chain supports 

the old wisdom that size really matters, as the ‘big five’ countries concentrate an 

overwhelming majority in every area of the chain. This is partly because of the fact that at the 

current technological level, industrial robots are used for a relatively small and well-defined 

scope of tasks, such as assembling and disassembling, processing (e.g. cutting and grinding), 

dispensing (e.g. panting and spraying), material handling (e.g. picking, placing, packaging, 

measuring, and testing), and welding and soldering (IFR, 2019). Similarly, the industry 

structure of global robot stock is characterised largely by only four industries: automotive, 

electronics, metal products, and rubber and plastic. Thus, these limited application 

possibilities greatly favour large-scale mass production which is driven by global companies, 

and by countries with large internal markets and/or strong export-oriented economies. Large 

economies have significantly higher resources for investment in new production technologies, 

as well as more advanced innovation systems, larger R&D capacities for robotics 

development than their smaller counterparts, and—perhaps most importantly— higher 

economies of scale to make robotics development and the deployment of industrial robots 

efficient.  

Nevertheless, the second trend is such that not all of the ‘big five’ countries possess an 

equally strong position in every part of the robotisation chain, as the early frontrunners and 

today’s global leaders, Japan and Korea do. For instance, Europe, and particularly Germany, 

is very strong in robot manufacturing and robot deployment, but needs to catch up with the 

global leaders for RDs and IRDs. The USA has its firm competitive advantages in robotics 

development, and yet industrial robots are not deployed in manufacturing as intensively as in 
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other ‘big five’ countries. China is currently a strong competitor in the deployment of 

industrial robots only —following the spirit of the age-old phrase that ‘if you can’t prevent 

change, embrace it’—because this is the way to maintain and improve its position as a ‘world 

factory’ (Zhang (Ed.), 2006) in this technological transformation. 

The third trend, the specialisation of smaller advanced economies in some specific areas of 

the robotisation chain, is a more pronounced development in Europe. While Austria, 

Denmark, France, the Netherlands, and Sweden may not engage in every part of the 

robotisation chain to the same extent as the ‘big five’ countries, they do have well performing 

RDs, and in addition to this, Belgium, Italy, and Spain make extensive use of industrial robots 

in various kinds of manufacturing. The majority of Central and Eastern European countries, 

however, are lagging behind, and are integrated into the robotisation chain almost exclusively 

by robot deployment. Within the Non-EU Europe group, Switzerland is one of the global 

leaders in robotics development, and within the South-East Asia group, Singapore and Taiwan 

are also successfully specialising in robotics development, as well as  in the deployment of 

industrial robots.  

Finally, the development of the robotisation chain has its own dynamics as it allows for 

convergence; the quickest and easiest path of convergence is the deployment of industrial 

robots in various kinds of manufacturing, particularly when the country belongs to multiple 

global production networks. Within the ‘big five’, over the course of only a couple of years, 

China has become a global leader in industrial robot deployment, and within Europe, the 

countries which are categorised within the Central and Eastern European group are also 

showing signs of convergence through industrial robot deployment. Most of these countries, 

however, are lacking when it comes to robotics development and robot manufacturing, and 

they are currently struggling to converge within these areas of the chain. Moreover, in many 

countries, the intensity of robot deployment is also around or below the global average, which 

increases the risk that they might be trapped in this stage.  
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Concluding remarks: Policy challenges  

Evidently, these four trends are about the first and current snapshot of the global robotisation 

race, which taking into account the strong dynamics and the complexity of the robotisation 

chain, might change rapidly in the years to come. These trends, however, raise three 

fundamental policy questions: 

 the first question relates to the integration of countries into the robotisation chain;  

 the second question is about the upgrading of economies along the chain;  

 while the third policy challenge is regarding the reshoring of previously offshored 

production processes, made feasible by advances in robotisation. 

The vast literature on global value chains consistently highlights that while the integration of 

less developed countries into the global value chains drives globalisation, this integration 

could also contribute enormously to their economic catching-up process (Kaplinsky, 2000; 

Kaplinsky and Morris, 2001; Henderson et al., 2002; Baldwin and Lopez-Gonzales 2013; 

Taglioni and Winkler, 2016; World Bank 2017a; Gereffi, 2018; UNIDO, 2018; Ponte, Gereffi 

and Raj-Reichert, 2019; Raei, Ignatenko, and Mircheva, 2019). Similarly, at present, an 

overwhelming majority of the world’s countries are excluded from the ongoing wave of 

robotisation, as the present report also covers only 43 countries which are engaged in 

robotisation with a stock of at least 1,000 industrial robots. Moreover, most of these countries 

are integrated into the robotisation chain only via robot deployment, without having robotics 

development at all. Hence, the policy challenge can be distilled into a single question: What 

factors support the integration of a country into the robotisation chain? 

There are many issues in integrating countries into the robotisation chain, such as 

development levels, industrial structures, the availability of skilled labour forces, innovation 

systems, the openness of the market, and economic policy. However, recent studies show that 

countries which engage in the various production networks of global companies have better 

chances of deploying industrial robots than those economies which are less globalised. For 

instance, in the 37 emerging economies covered by the European Bank for Reconstruction 

and Development (EBRD), a regression analysis suggests that 1% increase of foreign direct 

investment in a given sector and a given country is coupled with a 12% increase in industrial 

robot stock (EBRD, 2018). Cséfalvay (2019b) also highlights that the recent increase of robot 

stock in Central and Eastern Europe is partly a result of the nearshoring of Western European 

car manufacturers in the region. Once again, because at the current technological level, the 

application of industrial robots is limited to few industries and a relatively small number of 

production processes, this fact favours mass production driven by global companies. 

Therefore, the decisions of global firms about how to develop and configure the territorial 

structure of their supply chains across different economies have an immediate impact on the 

adoption of robots in the affected countries. This is, however, not without the risk of 

dependent robotisation, both in terms of a sectoral dependence from few industries, or a 

single industry from which global companies locate automated production, and in terms of 
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structural dependence, meaning that robotisation in these countries is excessively relying on 

the localisation decisions of global firms.  

Once a country is integrated into the robotisation chain, typically by robot deployment, its 

economy faces a new and more difficult challenge of upgrading along the robotisation chain, 

and the difficulty lies in the availability of different location factors at certain parts of the 

robotisation chain (see again Tab. 2). Robotics development (RDs and IRDs) is extremely 

R&D-intensive, and requires highly skilled labour to be available, as well as for there to be a 

supportive ecosystem of universities and research institutes. Robot manufacturing (RMs) 

requires not only domain knowledge in advanced manufacturing, but also for the internal 

market to be a specific size, allowing for upscaling, while the deployment of robots (RUMs) 

is highly capital-intensive, and requires middle-skilled labour. In short, and in contrast to 

those strategies that proved to be sufficient to attract robot-based manufacturing supported by 

foreign direct investment (FDI) streams (relatively well-skilled labour at low wages, good 

infrastructure, open economy, and trade liberalisation), the countries which are lagging behind 

need new policies for upgrading along the robotisation chain, policies which focus much more 

on improving their R&D capacities. As the example of some small and advanced economies 

in Europe and South-East Asia shows us, countries which do not have the market scale that 

makes robot manufacturing and robots deployment efficient, are able to move upwards along 

the robotisation chain by specialising in robotics development. For this purpose, a flourishing 

ecosystem of research institutions and universities seems to be a necessary prerequisite, but 

also targeted innovation policies and collaboration between the public and the private sectors 

in R&D might have a positive effect.  

Moreover, upgrading along the chain is a fundamental issue when it comes to the employment 

impacts of robotisation. There are two channels through which robotisation could contribute 

to job creation, and it is the biggest drawback of studies on the future of work that they almost 

entirely exclude these channels from their assessments of how the labour market might be 

impacted. The first channel is productivity gain, as deployment of robots increases 

productivity, and increased productivity could push down prices; lower prices could boost 

demand, and enhanced demand could have a positive impact on jobs across the whole 

economy. However, in light of our model of the robotisation chain, it is easy to see the second 

channel: the parts of the robotisation chain prior to the instalment and deployment of 

industrial robots by the robot using manufacturers (RUMs). In particular, robotics 

development (RDs and IRDs) and robot manufacturing (RMs) create new jobs and generate 

trade, and this fact must be considered when assessing the impact of robotisation on 

employment.  

Indeed, this is the point where the engagement of various countries in particular parts of the 

robotisation chain come into play again. The net employment effect across the whole 

robotisation chain might be significantly different in countries that have strong positions in all 

the three important elements of the robotisation chain than in countries that only deploy 

industrial robots and lack the job-creating parts of the robotics chain. In other words, the 

employment impact of robotisation depends not only on the skill-biased factors highlighted by 
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studies on the future of work, but also on countries’ integration and position in the 

robotisation chain. 

Yet, both integration into the robotisation chain and upgrading along the chain is to some 

extent hampered by the fact that robotisation has an immense power to redraw the current 

picture of the international division of labour. One the one hand, with robots, it is possible to 

produce the product parts in a more compact structure, and this could drastically diminish the 

number of components and intermediaries which are currently assembled in traditional 

manufacturing. On the other hand, robot-based automation and the application of digital and 

data-based technologies in manufacturing (Industry 4.0) increases opportunities for producing 

geographically closer to the consumer markets of the developed countries (Propis De and 

Bailey (Eds.), 2020). Consequently, the third policy challenge is such that companies may 

reconsider their supply chains and production networks, and this could result in the reshoring 

of previously offshored production processes, which depending on reshoring choice and 

geographical distance, could take on different forms, such as back-shoring, home-shoring, or 

near-shoring (Pegoraro, Propis De, and Chidlow, 2020).  

1 Although longitudinal analyses are sparsely available, and studies are varying greatly 

according to timeframe, methodology, and data, they indicate that  reshoring has already been 

started in Europe (Gray et al., 2013; Dachs and Kinkel, 2013; Fratocchi et al., 2014; De 

Backer et al., 2016; De Backer and Flaig, 2017; Mauro et al., 2018; Dachs et al., 2019; 

Kinkel, Pegoraro, and Coates, 2020), as the gap between offshoring and back-shoring 

activities has become smaller over the past two decades. For instance, in the European 

countries studied between10% and 22% of companies reported offshoring activities in the 

mid-2000s, and between 3% and 7% experienced reshoring (Kinkel 2012; Dachs and Kinkel 

2013). Though, almost a decade later, on average only 12% of companies offshored their 

activities in 2015, while more than 4% of the European firms analysed have moved 

production back to their home country (Dachs et al, 2019). Similar processes evolved in 

Germany, where the share of companies that reported offshoring ranged between 17% and 

27% in the mid-1990s, and where there was a significantly higher level of offshoring than 

there were firms which moved back activities (4-6%) (Kinkel, 2014). In the mid-2010s, 

however, Germany’s offshoring dropped to 9%, while back-shoring remained stable at 3% of 

the companies analysed (Kinkel, 2019). Consequently, according to Kinkel (2020:202), in 

Germany ‘there is currently one back-shoring company for every three offshoring 

companies.’ Nevertheless, in Europe, the average share of companies active in reshoring at all 

manufacturing companies varies widely from 3% in Germany to around 6% in Belgium and 

France, and up to 9% in Sweden (Kinkel, Pegoraro, and Coates, 2020).  

As these studies on reshoring highlight, the latest digital technologies and robot-based 

automation may reintroduce industrial production to developed countries, or help to maintain 

the manufacturing base at home. However, due to robotisation-driven reshoring, it is not the 

jobs that will return, but the production, with automated plants and robotised factories 

requiring fewer, but higher-skilled, workers. To put it plainly, the jobs that were relocated 

from developed countries to developing ones in the course of globalisation will never return. 
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In fact, new jobs will only be created in industrial production if workers are able to compete 

with the requirements of operating robotised plants through training and skills. 

2 Therefore, the policy challenge is twofold: highly developed countries with advanced 

manufacturing and innovation systems face a trade-off between the expected job losses in 

low-skilled activities that may be caused by robot deployment and the relatively small 

increase in higher-skilled jobs, and the significant productivity gains made feasible by 

reshoring with robotised factories. By contrast, countries which are currently excluded from 

robotisation, or are less involved in robotisation, have to confront the problem that back-

shoring industrial production from less developed countries to developed economies might 

block the way for integration and upgrading.  

Whether a country faces the issue of integration into robotisation, the challenge of upgrading 

along the robotisation chain, or the reshoring of previously offshored production, it is clear 

that further analyses, particularly at firm-level, will contribute to the appropriate design of 

targeted and country-specific policies. Similarly, while this study is based on aggregate data, 

further research using microdata could reveal a more detailed picture of the robotisation 

chain. Finally, while this report focuses on industrial robots, the development and widespread 

deployment of service robots may in the future trigger significant changes in the global 

robotisation race. 
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